European Journal of Forest Research

, Volume 133, Issue 1, pp 121–129 | Cite as

Leaf and litter nitrogen and phosphorus in three forests with low P supply

  • Julio Campo
  • Juan F. Gallardo
  • Guillermina Hernández
Original Paper

Abstract

We compared the N and P contents of the main labile components of nutrient cycles in three different forest ecosystems [a tropical evergreen forest (TEF); a tropical dry forest (TDF); and a Mediterranean temperate forest (MTF)] with low P supply. A mass-balance approach was used to estimate mean residence times for organic matter, N and P in the forest floor, and to examine the flexibility of N and P intra-system cycling in the three forest ecosystems. For this purpose, we combined published values of N and P in foliage, litterfall, forest floor litter and mineral soils in these three forest ecosystems. The results of our analysis were consistent with the widely held belief that the N content of leaves (both green and senescent) and litter increases with increasing temperatures. In contrast, the data did not support the hypothesis that leaf P content decreases with increasing temperatures and precipitation: leaf and litterfall P contents were higher in both tropical forests than they were in the temperate forest. The TEF had the highest P content of the three forests studied. The mass-balance analysis indicated that although P mineralization in the TDF can run ahead of litter decomposition stoichiometry when P is in short supply, flexibility is much reduced or absent in the TEF and the MTF. Our analysis provides additional evidence of the importance of climatic factors in forest ecosystem processes and highlights the role of flexibility in ecosystem nutrient cycling, especially for P in ecosystems with a limited P supply.

Keywords

Mediterranean temperate forest N:P ratio Nutrient cycling Nutrient limitation Tropical forests 

References

  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608CrossRefGoogle Scholar
  2. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449CrossRefGoogle Scholar
  3. Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67Google Scholar
  4. Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39:153–170Google Scholar
  5. Barantal S, Schimann H, Fromin N, Hättenschwiler S (2012) Nutrient and carbon limitation on decomposition in an Amazonian moist forest. Ecosystems. doi: 10.1007/s10021-012-9564-9
  6. Blanco JA, Bosco Imbert J, Castillo FJ (2009) Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecol Appl 19:682–698PubMedCrossRefGoogle Scholar
  7. Buchanan-Wollaston J (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199CrossRefGoogle Scholar
  8. Campo J, Dirzo R (2003) Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatán, Mexico. J Trop Ecol 19:525–530CrossRefGoogle Scholar
  9. Campo J, Vázquez-Yanes C (2004) Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7:311–319CrossRefGoogle Scholar
  10. Campo J, Solís E, Valencia MG (2007) Litter N and P dynamics in two secondary tropical dry forests after relaxation of nutrient availability constraint. Forest Ecol Manag 252:33–40CrossRefGoogle Scholar
  11. Ceccon E, Olmsted I, Vázquez-Yanes C, Campo J (2002) Vegetation and soil properties in two tropical dry forests of differing regeneration status in Yucatán. Agrociencia 36:245–254Google Scholar
  12. Ceccon E, Huante P, Campo J (2003) Effects of nitrogen and phosphorus fertilization on the survival and recruitment of seedling of dominant tree species in two abandoned tropical dry forests in Yucatán, Mexico. Forest Ecol Manag 182:387–402CrossRefGoogle Scholar
  13. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: Is there a “Redfield ratio” for microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  14. Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamente MMC, Chuyong G, Dobowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947PubMedCrossRefGoogle Scholar
  15. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  16. Fisher JB, Badgley G, Blyth E (2012) Global nutrient limitation in terrestrial vegetation. Glob Biogeochem Cycles 26. doi:10.1029/2011GB004252
  17. Gallardo JF, Martín A, Moreno-Marcos G, Santa-Regina I (1998) Nutrient cycling in deciduous forest ecosystems of the “Sierra de Gata” mountains: nutrient supplies to the soil through both litter and throughfall. Ann For Sci 55:771–784CrossRefGoogle Scholar
  18. Gallardo-Lancho JF (2000) Biogeochemistry of mediterranean forest ecosystems: a case study. Soil Biochem 10:423–460Google Scholar
  19. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  20. Hernández G (1999) Influencia de la material orgánica sobre algunas características del suelo en bosques de la Sierra del Rosario. Dissertation, Instituto de Ecología y Sistemática, La HabanaGoogle Scholar
  21. Herrera RA, Menéndez L, Rodríguez ME, García E (1988) Ecología de los bosques siempreverdes de la Sierra del Rosario, Cuba. MAB Project, 1974–1987. ROSTLAC, MontevideoGoogle Scholar
  22. Hongzhang K, Zaijun X, Björn B, Paul JB, Qunlu L, Zhicheng L, Zhaohua L, Chunjiang L (2010) Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann For Sci 67:811CrossRefGoogle Scholar
  23. Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727CrossRefGoogle Scholar
  24. Ladanai S, Agren GI, Olsson BA (2010) Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Swede. Ecosystems 13:302–316CrossRefGoogle Scholar
  25. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  26. Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686PubMedCrossRefGoogle Scholar
  27. Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Mongr 80:89–106CrossRefGoogle Scholar
  28. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forest worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  29. Menéndez L (1988) Dinámica de la producción de hojarasca. In: Herrera RA, Menéndez L, Rodríguez M, García E (eds) Ecología de los bosques siempreverdes de la Sierra del Rosario, Cuba. MAB Project, 1974–1987. ROSTLAC, Montevideo, pp 213–242Google Scholar
  30. Moreno-Marcos G, Gallardo-Lancho JF (2002) Atmospheric deposition in oligotrophic Quercus pyrenaica forests: implications for forest nutrition. For Ecol Manag 171:17–29CrossRefGoogle Scholar
  31. Niklas KJ, Cobb ED, Niinements Ü, Reich PB, Sellin A, Shirpley B, Wright IJ (2007) ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci USA 104:8891–8896PubMedCrossRefGoogle Scholar
  32. Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol Biogeogr 18:137–149CrossRefGoogle Scholar
  33. Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364PubMedCrossRefGoogle Scholar
  34. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006PubMedCrossRefGoogle Scholar
  35. Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin LO, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B 277:877–883PubMedCrossRefGoogle Scholar
  36. Schlesinger WH, Bernhardt ES (2013) Biogeochemistry. An analysis of global change, 3th edn edn. Academic Press Elsevier, San DiegoGoogle Scholar
  37. Sterner RW, Elser JJ (2002) Ecological stoichiometry. The biology of elements from molecules to biosphere. Princeton University Press, PrincetonGoogle Scholar
  38. Townsend AR, Cleveland CC, Asner GP, Bustamante MM (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118PubMedCrossRefGoogle Scholar
  39. Turrión MB, Gallardo JF, González MI (2002) Relationships between organic and inorganic P fractions with soil Fe and Al forms in forest soils of “Sierra de Gata” mountains (Western Spain). In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Soil mineral-organic matter-microorganism interactions and ecosystem health. Elsevier, Amsterdam, pp 297–310Google Scholar
  40. Vitousek P (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, PrincetonGoogle Scholar
  41. Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma 15:1–9CrossRefGoogle Scholar
  42. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavenders-Bares J, Chapin T, Cornelissen JHC, Diemer J, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:485–496CrossRefGoogle Scholar
  43. Yuan ZY, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julio Campo
    • 1
  • Juan F. Gallardo
    • 2
  • Guillermina Hernández
    • 3
  1. 1.Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Instituto de Recursos Naturales y AgrobiologíaCSICSalamancaSpain
  3. 3.Instituto de Ecología y SistemáticaHavanaCuba

Personalised recommendations