Skip to main content
Log in

Combining double sampling for stratification and cluster sampling to a three-level sampling design for continuous forest inventories

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

We extend the well-known double sampling for stratification sampling scheme by cluster subsampling to a three-level design and present corresponding estimators based on the infinite population approach in the first phase. After stratification of the sample points (phase I), a second-phase sample is drawn independently among the first-phase points within each stratum. On level III, clusters are formed of those phase II points and a sample of clusters is finally drawn without replacement. We used the forest planning units compartment and subdistrict as clusters and moreover formed clusters with a heuristic for the vehicle routing problem. The precision of the new estimator was compared to that achieved with classical double sampling for stratification in a case study. The results indicate that the expected increase in sampling errors caused by clustering cannot be compensated by the reduced inventory costs under the conditions given in the case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bergel D (1973) Formzahluntersuchungen an Buche, Fichte, europäischer Lärche und japanischer Lärche zur Aufstellung neuer Massentafeln. Allgemeine Forst- und Jagdzeitung 144:117–124

    Google Scholar 

  • Bergel D (1974) Massentafeln für Nordwestdeutschland II: Eiche, Roteiche, Kiefer. Niedersächsische Forstliche Versuchsanstalt Göttingen

  • Böckmann T, Saborowski J, Dahm S, Nagel J, Spellmann H (1998) Die Weiterentwicklung der Betriebsinventur in Niedersachsen. Forst und Holz 53(8):219–226

    Google Scholar 

  • Brassel P, Köhl M (2001) Visions. In: Brassel P, Lischke H (eds) Swiss national forest inventory: methods and models on the second assessment, pp 321–326

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    Google Scholar 

  • Dantzig G, Ramser J (1959) The truck dispatching problem. Manage Sci 6:80–91

    Article  Google Scholar 

  • de Vries PG (1986) Sampling theory for forest inventory. Springer, Berlin

    Book  Google Scholar 

  • Fattorini L, Franceschi S, Pisani C (2009) A two-phase sampling strategy for large-scale forest carbon budgets. J Stat Plan Inference 139:1045–1055. doi:10.1016/j.jspi.2008.06.014

    Article  Google Scholar 

  • Gregoire TG, Valentine H (2008) Sampling strategies for natural ressources and the environment. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Gröer C, Golden B, Wasil E (2010) A library of local search heuristics for the vehicle routing problem. Math Program Comput 2:79–101. doi:10.1007/s12532-010-0013-5

    Article  Google Scholar 

  • Hahsler M, Hornik K (2007) TSP-infrastructure for the traveling salesperson problem. J Stat Softw 23(2):1–21

    Google Scholar 

  • Kleinn C (1994) Comparison of the performance of line sampling to other forms of cluster sampling. For Ecol Manage 68:365–373

    Article  Google Scholar 

  • Kleinn C (1996) Ein Vergleich der Effizienz von verschiedenen Clusterformen in forstlichen Großrauminventuren. Forstwissenschaftliches Centralblatt 115:378–390

    Article  Google Scholar 

  • Köhl M (1994) Statistisches Design für das zweite Schweizerische Landesforstinventar: Ein Folgeinventurkonzept unter Verwendung von Luftbildern und terrestrischen Aufnahmen. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald. Schnee und Landschaft 69:3–141

    Google Scholar 

  • Li F, Golden B, Wasil E (2005) Very large-scale vehicle routing: new test problems, algorithms, and results. Comput Operations Res 32:1165–1179. doi:10.1016/j.cor.2003.10.002

    Article  Google Scholar 

  • Lund H (1998) IUFRO Guidelines for designing multipurpose resource inventories: a project of IUFRO research group 4.02.02, IUFRO world series, vol 8. IUFRO Secretariat Vienna

  • Mandallaz D (2008) Sampling techniques for forest inventories. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/. ISBN 3-900051-07-0

  • Saborowski J, Marx A, Nagel J, Böckmann T (2010) Double sampling for stratification in periodic inventories—Infinite population approach. For Ecol Manage 260:1886–1895. doi:10.1016/j.foreco.2010.08.035

    Article  Google Scholar 

  • Särndal CE, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer, Berlin

    Google Scholar 

  • Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiressource forest inventories. Wiley, New York

    Google Scholar 

  • Scott CT (1993) Optimal design of a plot cluster for monitoring. In: Rennolls K, Gertner G (eds) The optimal design of forest experiments and forest surveys: Proceedings, IUFRO S.4.11 conference. University of Greenwich, London, UK, pp 233–242

  • Scott CT, Köhl M (1994) Sampling with partial replacement and stratification. For Sci 40(1):30–46

    Google Scholar 

  • Sloboda B, Gaffrey D, Matsumura N (1993) Regionale und lokale Systeme von Höhenkurven für gleichaltrige Waldbestände. Allgemeine Forst- und Jagdzeitung 164:225–228

    Google Scholar 

  • Tomppo EO, Gschwantner T, Lawrence M, McRoberts RE (eds) (2010) National forest inventories. Pathways for common reporting. Springer, Heidelberg

    Google Scholar 

  • Zinggeler J (2001) Expenditure of the terrestrial inventory. In: Brassel P, Lischke H (eds) Swiss national forest inventory: Methods and models on the second assessment, pp 88–92

  • Zinggeler J, Herold A (1997) Zeitlicher und finanzieller Aufwand für die terrestrische Probenahme im zweiten Schweizerischen Landesforstinventar (LFI). Schweiz Z Forstwes 148:939–959

    Google Scholar 

Download references

Acknowledgments

We thank the German Science Foundation (DFG) for financial support of this study (Sachbeihilfe SA 415/5-1) and Dr. Böckmann of the Lower Saxony Forest Planning Office for his kind provision of the inventory data. Moreover, we thank anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas von Lüpke.

Additional information

Communicated by A. Weiskittel.

Appendices

Appendix

Proofs

To derive the variance of the new estimator, we decompose \(\hat{\bar{y}}_h\) as follows

$$ \hat{\bar{y}}_h=\bar{y}_h+\left(\hat{\bar{y}}_h-\bar{y}_h\right). $$
(21)

The variance of \(\hat{\bar{y}}_h\) is then given as the sum of the variances of the two components, because both components are not correlated (see (12.6) in Cochran 1977).

$$ \hbox{Var}\hat{\bar{Y}}_{cl}=\hbox{Var}\sum_{h=1}^{L}\frac{n'_h}{n'}\bar{y}_h+\hbox{Var}\sum_{h=1}^{L}\frac{n'_h}{n'}\left(\hat{\bar{y}}_h-\bar{y}_h\right) $$
(22)

In this equation, the first variance is the variance from 2st (Eq. 2). Due to the fact that \(E_3(\hat{\bar{y}}_h-\bar{y}_h)=0, \)

$$ \hbox{Var}\sum_{h=1}^{L}\frac{n'_h}{n'}\left(\hat{\bar{y}}_h-\bar{y}_h\right)=E \hbox{Var}_3\sum_{h=1}^{L}\frac{n'_h}{n'}\left(\hat{\bar{y}}_h-\bar{y}_h\right) $$
(23)

holds for the second variance. Assuming simple random sampling with drawing without replacement for the clusters, the variance and the covariance can be calculated as

$$ \hbox{Var}_3\left(\hat{\bar{y}}_h-\bar{y}_h\right)=\hbox{Var}_3\hat{\bar{y}}_h=\frac{1}{n_h^2}\frac{K^2}{k}\left(1-\frac{k}{K}\right)\breve{S}_h^2 $$
(24)

and

$$ Cov_3 \left(\hat{\bar{y}}_h-\bar{y}_h,\hat{\bar{y}}_{h'}-\bar{y}_{h'}\right)=Cov_3\left(\hat{\bar{y}}_{h},\hat{\bar{y}}_{h'}\right)=\frac{1}{n_h n_{h'}}\frac{K^2}{k}\left(1-\frac{k}{K}\right)\breve{S}_{hh'} $$
(25)

respectively. Substituting (24) and (25) in (23) yields

$$ \begin{aligned} Var\sum_{h=1}^{L}\frac{n'_h}{n'}\left(\hat{\bar{y}}_h-\bar{y}_h\right)=&E\sum_{h=1}^{L}\left(\frac{n'_h}{n'}\right)^2 \frac{1}{n_h^2}\frac{K^2}{k}\left(1-\frac{k}{K}\right)\breve{S}_h^2\\ &+E\sum_{h \neq {h'}}^{L}\frac{n'_h n'_{h'}}{{n'}^2}\frac{1}{n_h n_{h'}}\frac{K^2}{k}\left(1-\frac{k}{K}\right)\breve{S}_{hh'}. \end{aligned} $$
(26)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Lüpke, N., Saborowski, J. Combining double sampling for stratification and cluster sampling to a three-level sampling design for continuous forest inventories. Eur J Forest Res 133, 89–100 (2014). https://doi.org/10.1007/s10342-013-0743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0743-9

Keywords

Navigation