Skip to main content
Log in

Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts?

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Compared to lowland trees and forests, evidence on water relations at mountainous and sub-alpine sites with their climatic and topographic peculiarities is scarce. On such limited grounds, the outcome of three pilot studies is reviewed, intended to launch working hypotheses for initiating integrative research across the altitudinal gradient of the European Alps. Highlighted are tree transpiration and structural differentiation as well as stand water balance of mono-specific and/or mixed forests with Picea abies, Pinus cembra, Larix decidua and Fagus sylvatica at sub-alpine (timberline ecotone), mountainous and colline elevation. Given the preliminary evidence, tree-allometric structures of relevancy for water transport appeared to be independent of elevation and forest type, although timberline trees under open-canopy conditions did not buffer transpiration by internal water storage and had enhanced foliage/sapwood area ratios. Transpiration appeared to depend on site conditions rather than site-dependent adaptation. Canopy transpiration approached 20% of the high seasonal precipitation at the mountainous site, with about 60% being ascribed to run-off, whereas the water budget of the colline site was balanced during summer. The water balance of the subalpine site resembled, at lower precipitation, that of the mountainous site. The derived hypotheses focus on mixed-stand transpiration under altitude-specific topography and moisture regimes, hydraulic adaptation and water demand versus uptake capacity, as this latter ratio is crucial at high altitude in view of expected warming. The clarification of consistencies relative to contrasts indicated by the pilot studies will be challenging across altitudes in view of tree species, forest types and topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alsheimer M (1997) Xylemflussmessungen zur Charakterisierung raum-zeitlicher Heterogenitäten in der Transpiration montaner Fichtenbestände [Picea abies (L.) Karst.] dissertation, Universität Bayreuth

  • Ammer U, Breitsameter J, Kraus W, Zander J (1996) Der Beitrag des Bergwaldes zum Schutz gegen Oberflächenabfluss und Bodenabtrag. In: Scheiring H (ed) Das Bergwaldprotokoll: Forderungen an den Wald–Forderungen an die Gesellschaft. Blackwell Wissenschafts-Verlag Berlin, Wien, pp 9–31

    Google Scholar 

  • Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar CH, Elling W, Ewald J, Felbermeier B, Gilsa H von, Huss J, Kenk G, Kölling CH, Kohnle U, Meyer P, Mosandl R, Moosmayer HU, Palmer S, Reif A, Rehfuess KE, Stimm B (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa—Kritische Anmerkungen zu einem Beitrag von Rennenberg et al (2004) Allgemeine Forst- und Jagdzeitung 176:60–67

    Google Scholar 

  • Arenth A, Kelliher FM, Bauer G, Hollinger DY, Beyers JN, Hunt JE, McSeveny TM, Ziegler W, Vygodsaya NN, Milukova I, Sogachov A, Varlagin A, Schulze E-D (1996) Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia. Tree Physiol 16:247–255

    Google Scholar 

  • Aulitzky H (1963) Grundlagen und Anwendung des vorläufigen Wind-Schnee-Ökogramms. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 60:765–834

    Google Scholar 

  • Aulitzky H (1984) The microclimatic conditions in a subalpine forest as basis for the management. Geo J 8:277–281

    Google Scholar 

  • Aulitzky H (1994) Musterbeispiele vermeidbarer Hochwasser- und Lawinen. Veröffentlichungen der Kommission für Humanökologie der Österreichischen Akademie der Wissenschaften 4:69–96

    Google Scholar 

  • Aulitzky H (1996) Beispiele vermeidbarer Hochwasser- und Lawinenschäden. Tagungsband der Österreichischen Gesellschaft für Ökologie. Symposium Naturkatastrophen hausgemacht? pp 25–57

  • Aulitzky H, Turner H, Mayer H (1982) Bioklimatische Grundlagen einer standortsgemäßen Bewirtschaftung des subalpinen Lärchen-Arvenwaldes. Mitt Eidgen Forstl Versuchswesen 58:327–580

    Google Scholar 

  • Bader S, Kunz B (1998) Klimarisiken—Herausforderung für die Schweiz. Wissenschaftlicher Schlussbericht im Rahmen des nationalen Forschungsprogrammes “Klimaänderungen und Naturkatastrophen”, NFP 31. vdf Hochschulverlag AG an der ETH-Zürich, p 307

  • Benecke P, Van de Ploeg RR (1976) Quantifizierung des zeitlichen Verhaltens der Wasserhaushaltskomponenten eines Buchen- und FichtenaltholzBestandes im Solling mit Hilfe bodenhydrologischer Methoden. Verhandlg. Ges. Ökologie, pp 3–16

  • Benecke U, Schulze E-D, Matyssek R, Havranek WM (1981) Environmental control of CO2 assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50:54–61

    Article  Google Scholar 

  • Beyschlag W (2001) Biotic interactions. In: Huttunen S, Heikkilä H, Bucher J-B, Sundberg B, Jarvis PG, Matyssek R (eds) Trends in European forest tree physiological research. Kluwer, The Netherlands, pp 197–205

    Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetationskunde. In: Schoenichen W (Hrsg.): Biologische Studienbücher 7. Springer, Berlin, p 330S

  • Burger H (1941) Holz, Blattmenge und Zuwachs. V. Mitteilung: Fichten und Föhren verschiedener Herkunft auf verschiedenen Kulturorten. In: Burger H (Hrsg.) Mitteilungen der Schweizerischen Anstalt für das Forstliche Versuchswesen. Kommissionsverlag von Beer & CIE, Zürich, Band 22, 1. Heft, pp 10–62

  • Burger H (1950) Holz, Blattmenge und Zuwachs- Die Buche. In: Burger H (Hrsg.) Mitteilungen der Schweizerischen Anstalt für das Forstliche Versuchswesen. Kommissionsverlag von Beer & CIE, Zürich; Band 26, 2. Heft, pp 419–468

  • Burger H (1953) Holz, Blattmenge und Zuwachs. XIII. Mitteilung: Fichten im gleichaltrigen Hochwald. In: Burger H (Hrsg.) Mitteilungen der Schweizerischen Anstalt für das Forstliche Versuchswesen. Kommissionsverlag von Beer & CIE, Zürich, Band 29, 2. Heft, pp 38–130

  • Cermák J (1989) Leaf distribution in large trees and stands of the floodplain forests in southern Moravia. Tree Physiol 18:727–737

    Google Scholar 

  • Cermák J, Kucera J (1993) Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanical factors. In: Borghetti M, Grace J, Raschi A (eds) Water transport in plants under climatic stress. Cambridge University Press, London, pp 181–190

  • Cermák J, Nadezhidina N (1998) Sapwood as the scaling parameter—defining according to xylem water content or radial pattern of sap flow? Ann Sci For 55:509–521

    Article  Google Scholar 

  • Cermak J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plant 15:171–178

    Article  Google Scholar 

  • Cermak J, Cienciala E, Kucera J, Lindroth A, Hallgren JE (1992) Radial velocity profiles of water flow in stems of spruce and oak and response of spruce tree to severing. Tree Physiol 10:367–380

    PubMed  Google Scholar 

  • Ciais PH, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Chr Bernhofer, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat, drought in 2003. Nature 437(7058):529–534

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Lemoine D, Ameglio T, Granier A (2001) Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol 21:27–33

    CAS  PubMed  Google Scholar 

  • Dertz W (1996) Buchenwälder im Zielkatalog der Forstwirtschaft. In: Buchenwälder—ihr Schutz und ihre Nutzung. Stiftung Wald in Not, Bonn, Germany, pp 2–8

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5. Auflage, Ulmer, Stuttgart, p 1095S

  • Engelhardt S, Matyssek R, Huwe B (2009) Complexity and information propagation in hydrological time series of mountain forest catchments. Eur J Forest Res. doi:10.1007/s10342-009-0306-2

  • Ewers BE, Mackay DS, Gower ST, Ahl DE, Burrows SN, Samanta SS (2001) Tree species effects on stand transpiration in northern Wisconsin. Water Resources Research 38: art. no. 1103

    Google Scholar 

  • FAO–ISRIC–ISSS (1998) World reference base for soil resources FAO, Rome, p 109

  • Finnigan JJ, Raupach MR (1987) Transfer processes in plant canopies in relation to stomatal characteristics. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function, Stanford Press, Stanford, pp 385–429

  • Goldstein GH, Brubaker LB, Hinckley TM (1985) Water relations of white spruce (Picea glauca (Moench) Voss) at tree line in north central Alaska. Can J For Res 15:1080–1087

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impact of climate change on the treeline. Ann Bot 90:537–544

    Article  CAS  PubMed  Google Scholar 

  • Granier A (1985) Une nouvelle méthode pour la mesure de flux de sève brute dans le tronc des arbres. Ann Sci For 42:193–200

    Article  Google Scholar 

  • Granier A, Biron P, Breda N, Pontailler JY (1996) Transpiration of trees and forest stands: short and longterm monitoring using sapflow methods. Glob Chang Biol 2(3):265–274

    Article  Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308

    Article  Google Scholar 

  • Graumlich LJ (1991) Subalpine tree growth, climate, and increasing CO2: an assessment of recent growth trends. Ecology 72:1–11

    Article  Google Scholar 

  • Grill D, Havranek WM, Huttunen S, Guttenberg H (1999) Tree growth at high altitude and high latitude. Phyton 39 (special edition), p 285

  • Guggenberger H. (1980) Untersuchungen zum Wasserhaushalt der alpinen Zwergstrauchheide Patscherkofel. Ph.D. thesis botany, University Innsbruck, p 229

  • Häberle K-H, Reiter IM, Nunn AJ, Gruppe A, Simon U, Gossner M, Werner H, Leuchner M, Heerdt C, Fabian P, Matyssek R (2003) KROCO, Freising, Germany: canopy research in a temperate mixed forest of Southern Germany. In: Basset Y, Horlyck V, Wright SJ (eds) Studying forest canopies from above: the international canopy crane network. Smithsonian Tropical Research Institute and UNEP, pp 71–78

  • Hadley JL, Smith WK (1987) Influence of krummholz mat microclimate on needlephysiology and survival. Oecologia 73:82–90

    Article  Google Scholar 

  • Häsler R (1982) Net photosynthesis and transpiration of Pinus montana on east and north facing slopes at alpine timberline. Oecologia 54:14–22

    Article  Google Scholar 

  • Havranek WM, Benecke U (1978) The influence of soil moisture on water potential, transpiration and photosynthesis of conifer seedlings. Plant Soil 49:91–103

    Article  CAS  Google Scholar 

  • Havranek WM, Matyssek R (2005) The carbon balance of European Larch (Larix decidua) at the alpine timberline. Phyton 45:213–232

    CAS  Google Scholar 

  • Havranek WM, Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 95–124

    Google Scholar 

  • Hehn M (1997) Die geschichtliche Entwicklung des Buchen-Vorbaus in Deutschland. In: Kalkkuhl R, Schmidt A (eds) Waldumbau von Nadelholzreinbeständen in Mischbestände durch Buchen-Voranbau und Buchen-Voraussaat, vol 13. Schriftreihe der Landesanstalt für Ökologie, Bodenordnung und Forsten, Landesamt für Agrarordnung Nordrhein-Westfalen, Münster, pp 7–16

    Google Scholar 

  • Herzog KM, Thum R, Kronfuss G, Heldstab H-J, Häsler R (1998) Patterns and mechanisms of transpiration in a large subalpine spruce (Picea abies (L.) Karst.). Ecol Res 13:105–116

    Article  Google Scholar 

  • Hofmann M, Engelhardt S, Huwe B, Stumpp S (2009) Regionalizing soil properties in a catchment of the Bavarian Alps. Eur J Forest Res. doi:10.1007/s10342-008-0242-6

  • Hollinger DY, Kelliher FM, Schulze E-D, Köstner BMM (1994) Coupling tree transpiration to atmospheric turbulence. Nature 371:60–62

    Article  Google Scholar 

  • Holtmeier F-K (2000) Mountain timberlines. Ecology, patchiness, and dynamics. Advances in Global Change Research, vol 14. KLuwer Academic Publishers, Dortrecht, oston, London

    Google Scholar 

  • Huber B (1928) Weitere quantitative Untersuchungen über das Wasserleitungssystem der Pflanzen. JB wiss Bot 67:877–959

    Google Scholar 

  • Huber B (1956) Die Gefäßleitung. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie Bd. 3. Springer, Berlin, pp 541–582

    Google Scholar 

  • Innes JL (1991) High-altitude and high-latitude tree growth in relation to past, present and future global climate change. Holocene 2:168–173

    Article  Google Scholar 

  • Jarvis PG, James GB, Landsberg JJ (1976) Coniferous forest. In: Monteith JL (ed) Vegetation and the atmosphere, vol 2. Academic Press, New York, pp 171–240

    Google Scholar 

  • Jiménez MS, Nadezhdina N, Cermák J, Morales D (2000) Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands. Tree Physiol 20:1149–1156

    PubMed  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner CH (1999) Alpine plant life: functional plant ecology of hogh mountain ecosystems. Springer, Berlin, p 344

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner CH, Wieser G, Cernusca A (1989) Der Wasserhaushalt waldfreier Gebiete in den österreichischen Alpen zwischen 600 und 2.600 m Höhe. In: Cernusca A (ed) Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröffentlichungen des Österreichischen MaB-Hochgebirgsprogramms Hohe Tauern, Band 13. Universitätsverlag Wagner, Innsbruck, pp 119–153

    Google Scholar 

  • Köstner B (1999) Die Transpiration von Wäldern—Quantifizierung als Xylemsaftfluss und Faktorenabhängigkeit von Teilflüssen. Universität Bayreuth, Habilitationsschrift

    Google Scholar 

  • Köstner B (2001) Evaporation and transpiration from forests in Central Europe relevance of patch-level studies for spatial scaling. Meteorol Atmos Phys 76:69–82

    Article  Google Scholar 

  • Köstner BMM, Schulze E-D, Kelliher FM, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL (1992) Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia 91:350–359

    Article  Google Scholar 

  • Köstner B, Granier A, Cermak J (1998a) Sapflow measurements in forest stands—methods and uncertainties. Ann Sci For 55:13–27

    Article  Google Scholar 

  • Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD (1998b) Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. Ann Sci For 55:125–139

    Article  Google Scholar 

  • Köstner B, Matyssek R, Heilmeier H, Clausnitzer F, Nunn AJ, Wieser G (2008) Sap flow measurement as a basis for assessing trace-gas exchange of trees. Flora 203:14–33

    Google Scholar 

  • Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichthieben, Hannover

  • Kräuchi N, Brang P, Schönenberger W (2000) Forests of mountainous regions: gaps in knowledge and research needs. For Ecol Manage 132:73–82

    Article  Google Scholar 

  • Kronfuss H (1997) Das Klima einer Hochlagenaufforstung in der subapinen Stufe. FBVA Berichte 100, p 331

  • Kronfuss G, Polle A, Tausz M, Havranek WM, Wieser G (1998) Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current year needles in young Norway spruce (Picea abies (L.) Karst.). Trees 12:482–489

    Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen. Ulmer-Verlag, Stuttgart, p 408

  • Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Ergebnisse der Dendrometermessungen 1976/79. Mitteilungen der der Forstlichen Bundesversuchsanstalt Wien 142:417–441

    Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548

    Article  Google Scholar 

  • Mackey DS, Ahl DE, Ewers BE, Samanta S, Gower ST (2003) Physiological tradeoffs in the parameterization of a model of canopy transpiration. Adv Water Resour 26:179–194

    Article  Google Scholar 

  • Markart G (2000) Der Wasserhaushalt von Hochlagenaufforstungen. Schriftenreihe der Forstlichen Bundesversuchsanstalt Wien, FBVA-Bericht 117

  • Matyssek R (1986) Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol 2:177–187

    CAS  PubMed  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Keller T, Scheidegger C (1991) Impairment of the gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations. Trees 5:5–13

    Article  Google Scholar 

  • Matyssek R, Wieser G, Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Winkler JB, Baumgarten M, Häberle K-H, Grams TEE, Werner H, Fabian P, Havranek WM (2004) Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmos Environ 38:2271–2281

    Article  CAS  Google Scholar 

  • Meinzer FC, Brooks JR, Domec JC, Gartner BL, Warren JM, Woodruff DR, Bible K, Shaw DC (2006) Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ 29:105–114

    Article  CAS  PubMed  Google Scholar 

  • Neuwinger I (1970) Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitteilungen der Ostalpin-Dinarischen Gesellschaft 11:135–150

    Google Scholar 

  • Neuwinger I (1980) Erwärmung, Wasserrückhalt und Erosionsbereitschaft subalpiner Böden. Mitteilungen der Forstlichen Bundesversuchsanstalt Wien 129:113–144

    Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42:105–119

    CAS  Google Scholar 

  • Palladry SG, Cermak J, Ewers FW, Kaufmann MR, Parker WC, Sperry JS (1995) Water transport dynamics in trees and stands. In: Smith WK, Hinckley TM (eds) Resource physiology of conifers. Acquisition, allocation, and utilization. Academic Press, San Diego, pp 301–389

    Google Scholar 

  • Pereira AR, Green S, Nova NA (2006) Penman-Monteith evapotranspiration adapted to estimate irrigated tree transpiration. Agric Water Manage 83:153–161

    Article  Google Scholar 

  • Pretzsch H (2003) Diversität und Produktivität von Wäldern. Allg Forst- und Jagdztg 174:88–98

    Google Scholar 

  • Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst. Forstw Cbl 117:241–257

    Article  Google Scholar 

  • Reichelt G, Wilmanns O (1973) Vegetationsgeographie—Westermann. Braunschweig, p 210S

  • Reiter IM, Häberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.)—ein Waldbaum ohne Zukunft im südlichen Mitteleuropa ? Allg Forst- u J-Ztg 175:210–224

    Google Scholar 

  • Sakuratani T (1981) A heat balance method for measuring water flux in the stem of intact plants. J Agric Meteorol 40:273–277

    Google Scholar 

  • Schipka F, Heimann J, Leuschner C (2005) Regional variation in canopy transpiration of Central European beech forests. Oecologia 143:260–270

    PubMed  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry—an analysis of global change. Academic Press, San Diego, p 588

    Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II, vol 12B. Springer, Berlin, pp 615–676

    Google Scholar 

  • Schulze E-D (1994) The regulation of plant transpiration: interactions of feedforward, feedback, and futile cycles. In: E-D SCHULZE (ed) Flux control in biological systems. Academic Press, New York, pp 203–235

    Google Scholar 

  • Schulze E-D, Cermak J, Matyssek R, Penka M, Zimmermann R, Vasicek F, Gries W, Kucera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475–483

    Article  Google Scholar 

  • Schume H, Jost G, Katzensteiner K (2003) Spatio-temporal analysis of the soil water content in a mixed Norway spruce [Picea abies (L.) Karst.]—European beech (Fagus sylvatica L.) stand. Geoderma 112:BP 273–BP 287

    Article  Google Scholar 

  • Stitt M, Schulze E-D (1994) Plant growth, storage and resource allocation: From flux control in metabolic chain to the whole-plant level. In: Schulze E-D (ed) Flux control in biological systems: form enzymes to populations and ecosystems. Academic Press, San Diego, pp 57–118

    Google Scholar 

  • Stumpp C, Engelhardt S, Hofmann M, Huwe B(2009) Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps. Eur J Forest Res. doi:10.1007/s10342-008-0241-7

  • Styles JM, Raupach MR, Farquhar GD, Kolle O, Lawton KA, Brand WA, Werner RA, Jordan A, Schulze E-D, Shibistova O, Lloyd J (2002) Soil and canopy CO2, (CO2)–13C, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus B Chem Phys Meteorol 54:655–676

    Article  Google Scholar 

  • Tenhunen JD, Valentini R, Köstner B, Zimmermann R, Granier A (1998) Variation in forest gas exchange at landscape to continental scales. Ann Sci For 55:1–12

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Ecological studies 31. Springer, Berlin, p 137

    Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin, p 283

    Google Scholar 

  • Veit H (2002) Die Alpen–Geoökologie und Landschaftsentwicklung. Ulmer UTB, Stuttgart, p 352

    Google Scholar 

  • Walther G-R, Beißner S, Pott R (2005) Climate change and high mountain vegetation shifts. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 77–95

    Google Scholar 

  • Waring RH, Running SW (1998) Forest ecosystems, analysis at multiple scales. Academic Press, San Diego

  • Waring RH, Schlesinger WH (1985) Forest ecosystems—concepts and management. Academic Press, San Diego, p 340

    Google Scholar 

  • Watta MS, Moorea JR, Façonb J-P, Downesc GM, Clintona PW, Cokera G, Davisa MR, Simcock R, Parfitte RL, Dandoe J, Mason EG, Bown HE (2006) Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity. For Ecol Manag 229:136–144

    Article  Google Scholar 

  • Werk KS, Oren R, Schulze E-D, Zimmermann R, Meyer J (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline, III. Canopy transpiration of green trees. Oecologia 76:519–524

    Google Scholar 

  • Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644

    PubMed  Google Scholar 

  • Wieser G (2004) Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps. Tree Physiol 254:475–480

    Google Scholar 

  • Wieser G (2007) Climate at the upper timberline. In: Wieser G, Tausz M (eds) Trees at their upper limit. Treelife limitation at the alpine timberline. Plant Ecophysiology, vol 5. Springer, Dorthrecht, pp 19–36

    Google Scholar 

  • Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15:253–258

    CAS  PubMed  Google Scholar 

  • Wieser G, Havranek WM (1996) Evaluation of ozone impact on mature spruce and larch in the field. J Plant Physiol 148:189–194

    CAS  Google Scholar 

  • Wieser G, Kronfuß G (1997) The influence of vapour pressure deficit and mild soilwater stress on the gas exchange of Norway spruce [Picea abies (L.) Karst.] seedlings. Centralblatt für das gesamte Forstwesen 114:173–182

    Google Scholar 

  • Wieser G, Stöhr D (2005) Net ecosystem carbon dioxide exchange dynamics in a Pinus cembra forest at the upper timberline in the Central Austrian Alps. Phyton 45:233–242

    CAS  Google Scholar 

  • Wieser G, Tausz M (2007) Trees at their upper limit. Plant ecophysiology, vol 5, Springer, Berlin, p 232

  • Wieser G, Häsler R, Götz B, Koch W, Havranek WM (2000) Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: a synthesis. Environ Pollut 109:415–422

    Article  CAS  PubMed  Google Scholar 

  • Wieser G, Matyssek R, Köstner B, Oberhuber W (2003) Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement. Environ Pollut 126:5–8

    Article  CAS  PubMed  Google Scholar 

  • Wieser G, Hammerle A, Wolfahrt G (2008) The water balance of grassland ecosystems in the Austrian Alps. Arct Antarct Alp Res 40:439–445

    Article  Google Scholar 

  • Wuebbles DJ, Jain A, Edmonds J, Harvey D, Hayhoke K (1999) Global change: state of their science. Environ Pollut 100:57–86

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Hanson PJ, Todd DE (2001) Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For Ecol Manage 143:205–213

    Article  Google Scholar 

  • Zierl B (2001) A water balance model to simulate drought in forested ecosystems and its application to the entire forested area in Switzerland. J Hydrol 242:115–136

    Article  Google Scholar 

  • Zimmermann MH (1964) Effect of low temperature on the ascent of sap in trees. Plant Physiol 39:568–572

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann R, Schulze E-D, Wirth C, Schulze EE, McDonald KC, Vygodskaya NN, Ziegler W (2000) Canopy transpiration in a chronosequence of Siberian pine forests. Glob Chang Biol 6:25–37

    Article  Google Scholar 

  • Zirlewagen D, von Wilpert K (2001) Modeling water and ion fluxes in a highly structured, mixed-species stand. For Ecol Manage 143:27–37

    Article  Google Scholar 

Download references

Acknowledgments

The case studies addressed in this review were funded by “Deutsche Forschungsgemeinschaft” (DFG), through project no. Ma 1763/3-3 (Die Transpiration von Waldbäumen als Grundlage der Validierung und Modellierung der Bestandstranspiration in einem Wassereinzugsgebiet des Flusses Ammer) and SFB 607 (Growth and Parasite Defence—Competition for Resources in Economic Plants from Agronomy and Forestry), The technical assistance by Ing. T. Feuerbach, Mrs. I. Süß and Mr. P. Kuba is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Matyssek.

Additional information

Communicated by H. Pretzsch.

The research reported in this article was conducted in the context of the DFG-funded umbrella project ‘Methodologies in Linking Hydrological and Biological Processes at the Landscape Level—a Contribution to IGBP/BAHC Research in Germany’ (DFG: Deutsche Forschungsgemeinschaft, German Research Foundation).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matyssek, R., Wieser, G., Patzner, K. et al. Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts?. Eur J Forest Res 128, 579–596 (2009). https://doi.org/10.1007/s10342-008-0243-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0243-5

Keywords

Navigation