Skip to main content

Advertisement

Log in

The assessment of tree row attributes by stratified two-stage sampling

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Tree row inventories are of increasing interest because tree rows mitigate wind erosion and desertification, protect agricultural crops, enhance rural landscape quality, act as bio-corridors, carbon sinks, and a source for bio-energy. The main objective of tree row inventories is to estimate population parameters such as total tree numbers, total tree numbers by species, the mean stem diameter at breast height, the mean tree height and total wood volume. The estimation of these quantities may be straightforwardly carried out whenever aerial images are available in such a way that tree rows can be counted: in these cases, a two-stage cluster sampling may be performed in which the primary units sampled in the first stage are the tree rows in the study area while the secondary units sampled in the second stage are the trees within the selected rows. This paper proposes two sets of two-stage estimators for the interest parameters, based on the Horvitz–Thompson and ratio criteria, together with the corresponding estimators for their sampling variances. The use of stratification is also considered. The proposed procedure was applied to perform a tree row inventory in the Pontina plain (Central Italy): in this case, the tree rows were enumerated by means of ortho-corrected airborne images and stratification was carried out on the basis of the prevailing species and age classes. The inventory results are interesting from a forestry perspective as well as for checking the effectiveness of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellefontaine R, Petit S, Pain-Orcet M, Deleporte P, Bertault J-G (2002) Trees outside forests. Towards better awareness. FAO Conservation Guide 35, Roma

    Google Scholar 

  • Chevrou R (1973) Inventaire des haies. Revue Forestière Francaise 1:47–53

    Google Scholar 

  • Cochran WG (1977) Sampling techniques. Wiley, New York

    Google Scholar 

  • Corona P, Chiarabaglio PM, Chirici G, Coaloa D, Travaglini D (2002) Stima di alberature e frangivento tramite campionamento per intersezione lineare. L’Italia Forestale e Montana 3:276–292

    Google Scholar 

  • David CA, Rhyner V (1999) An assessment of windbreaks in central Wisconsin. Agroforest Syst 44:313–331

    Article  Google Scholar 

  • De Vries PG (1986) Sampling theory for forest inventories. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Godambe VP (1955) A unified theory of sampling from finite populations. J Roy Stat Soc B 17:269–278

    Google Scholar 

  • Hansen MH (1985) Line intersect sampling of wooded strips. Forest Science 31:282–288

    Google Scholar 

  • Jim CY (1989) Tree-canopy characteristics and urban development in Hong Kong. Geograph Rev 79:210–225

    Article  Google Scholar 

  • Kleinn C (2000) On large area inventory and assessment of trees outside forests. Unasylva 200:3–10

    Google Scholar 

  • Lapietra G, Coaloa D, Sampietro L (1985) Filari di piante da legno nella pianura lombarda. Quaderni di Ricerca SAF 5, Roma, Italy

    Google Scholar 

  • Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiresource forest inventory. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The work, carried out by the authors in equal parts, was funded by ARSIAL (Latium Region). We are grateful for technical assistance from Simone Bollati and Giuseppe Clementi for their fieldwork. We would also like thanking two anonymous reviewers for their helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piermaria Corona.

Additional information

Communicated by Hans Pretzsch

Appendices

Appendix 1

The estimator (Eq. 7) may be rewritten as

$${\hat{Y}}_{\rm RAP2} = \frac{\frac{N}{n}{\sum_{i \in S} {M_{i} {\bar{y}}_{i}}}}{\frac{N}{n}{\sum_{i \in S} {x_{i}}}} X = \frac{{\hat{Y}}_{\rm HT2}}{{\hat{X}}_{\rm HT}} X$$
(13)

i.e, as a ratio of the Horvitz–Thompson estimators of Y and X, where the numerator is a two-stage estimator while the denominator needs only of the first stage of sampling.

The expansion of Eq. 13 by means of a Taylor series up to the first order in a neighbourhood of Y and X gives rise to

$${\hat{Y}}_{\rm RAP2} \cong {\hat{Y}}_{\rm HT2} - R ({\hat{X}}_{\rm HT} - X), $$

where R=Y/X. Since \({\hat{X}}_{\rm HT}\) is a constant with respect to second-stage sampling, it follows that

$$\begin{aligned} E_{2} ({\hat{Y}}_{\rm RAP2}) \cong & E_{2} ({\hat{Y}}_{\rm HT2}) - R ({\hat{X}}_{\rm HT} - X) \\ =& \frac{N}{n}{\sum\limits_{i \in S} {M_{i} E_{2} ({\bar{y}}_{i})}} - R({\hat{X}}_{\rm HT} - X) \\ =& \frac{N}{n}{\sum\limits_{i \in S} {Y_{i}}} - R({\hat{X}}_{\rm HT} - X)\\ =& {\hat{Y}}_{\rm HT} - R({\hat{X}}_{\rm HT} - X) \\ \end{aligned}$$
(14)
$$V_{2} ({\hat{Y}}_{\rm RAP2}) \cong V_{2} ({\hat{Y}}_{\rm HT2}) = \frac{N^{2}}{n^{2}}{\sum\limits_{i \in S} {M^{2}_{i} V_{2} ({\bar{y}}_{i})}} = \frac{N^{2}}{n^{2}}{\sum\limits_{i \in S} {M_{i} (M_{i} - m_{i})}}\frac{{\sigma ^{2}_{i}}}{{m_{i}}}, $$

where E 2 and V 2 denote expectation and variance with respect to the second stage, while Y i and σ2 i represent the total and the variance of the interest variable in row i.

From Eq. 14 it is at once apparent that the expectation of \({\hat{Y}}_{\rm RAP2}\) approximately equals the Taylor series approximation of the familiar one-stage ratio estimator

$${\hat{Y}}_{\rm RAP} = \frac{{\hat{Y}}_{\rm HT}}{{\hat{X}}_{\rm HT}} X. $$
(15)

From the well-known properties of Eq. 15 (see e.g., Cochran 1977, chap. 6), it follows that

$$ E ({\hat{Y}}_{\rm RAP2}) = E_{1} \left\{ E_{2} ({\hat{Y}}_{\rm RAP2}) \right\} \cong E_{1} \left\{{\hat{Y}}_{\rm HT} - R({\hat{X}}_{\rm HT} - X)\right\} = Y $$
$$\begin{aligned} V ({\hat{Y}}_{\rm RAP2}) =& V_{1} \left\{ E_{2} ({\hat{Y}}_{\rm RAP2})\right\} + E_{1}\left\{V_{2} ({\hat{Y}}_{\rm RAP2})\right\}\\ \cong & V_{1} \left\{ {\hat{Y}}_{\rm HT} - R({\hat{X}}_{\rm HT} - X) \right\} + E_{1}\left\{ \frac{N^{2}}{n^{2}} \sum\limits_{i \in S} {M_{i} (M_{i} - m_{i})\frac{\sigma^{2}_{i}}{m_{i}}}\right\} \\ = & N(N - n)\frac{\sigma^{2}_{e}}{n} + \frac{N}{n}\sum\limits_{i = 1}^{N} {M_{i} (M_{i} - m_{i})\frac{{\sigma^{2}_{i}}}{m_{i}}} \\ \end{aligned},$$
(16)

where \(\sigma^{2}_{e} = \frac{1}{N - 1}{\sum_{i = 1}^{N} e^{2}_{i}}, e_{i} = Y_{i} - RX_{i}\) while E 1 and V 1 denote expectation and variance with respect to the first stage.

Now, it is worth noting that an unbiased estimator of \(V({\hat{Y}}_{\rm RAP2})\) is given by

$${\tilde{V}}({\hat{Y}}_{\rm RAP2}) = N(N - n) \frac{s^{2}_{{\tilde{e}}}}{n} + \frac{N}{n}{\sum\limits_{i \in S} {M_{i} (M_{i} - m_{i})\frac{{s^{2}_{i}}}{m_{i}}}}, $$
(17)

where \(s^{2}_{{\tilde{e}}} = \frac{1}{n - 1} \sum\nolimits_{i \in S} ({\tilde{e}}_{i} - {\bar{e}})^{2} = \frac{1}{n} \sum_{i \in S} {\tilde{e}}^{2}_{i} - \frac{1}{n(n - 1)} \sum\nolimits_{h \neq i \in S} {\tilde{e}}_{i} {\tilde{e}}_{h}, {\tilde{e}}_{i} = {\hat{Y}}_{i} - RX_{i}\) and \({\bar{e}}\) denotes the sample mean of the \({\tilde{e}}_{i}{\text{s}}.\) Indeed, since

$$E_{2} ({\tilde{e}}_{i}) = E_{2} ({\hat{Y}}_{i}) - RX_{i} = Y_{i} - RX_{i} = e_{i} $$

and

$$V_{2} ({\tilde{e}}_{i}) = V_{2} ({\hat{Y}}_{i}) = M_{i} (M_{i} - m_{i}) \frac{{\sigma^{2}_{i}}}{{m_{i}}},$$

then

$$E_{2} ({\tilde{e}}^{2}_{i}) = V_{2} ({\hat{Y}}_{i}) + e^{2}_{i}. $$

Hence

$$\begin{aligned} E_{2} (s^{2}_{{\tilde{e}}}) =& \frac{1}{n}\sum\limits_{i \in S} E_{2} ({\tilde{e}}^{2}_{i}) - \frac{1}{{n(n - 1)}} \sum\limits_{h \neq i \in S} E_{2} ({\tilde{e}}_{i} {\tilde{e}}_{h}) \\ =& \frac{1}{n} \sum\limits_{i \in S} M_{i} (M_{i} - m_{i}) \frac{{\sigma ^{2}_{i}}}{{m_{i}}} + \frac{1}{n} \sum\limits_{i \in S} {e^{2}_{i}} - \frac{1}{{n(n - 1)}} \sum\limits_{h \neq i \in S} e_{i} e_{h} \\ \end{aligned}$$
$$\begin{aligned} E_{2} \left\{ {\tilde{V}} ({\hat{Y}}_{\rm RAP2}) \right\} = & N(N - n)\frac{{E_{2} (s^{2}_{e})}}{n} + \frac{N}{n} \sum\limits_{i \in S} M_{i} (M_{i} - m_{i}) \frac{{E_{2} (s^{2}_{i})}}{{m_{i}}} \\ =& \frac{{N(N - n)}}{n^{2}} \sum\limits_{i \in S} M_{i} (M_{i} - m_{i}) \frac{{\sigma ^{2}_{i}}}{m_{i}} + \frac{{N(N - n)}}{n^{2}} \sum\limits_{i \in S} e^{2}_{i} \\ & - \frac{{N(N - n)}}{n^{2} (n - 1)} \sum\limits_{h \neq i \in S} e_{i} e_{h} + \frac{N}{n} \sum\limits_{i \in S} M_{i} (M_{i} - m_{i}) \frac{{\sigma^{2}_{i}}}{m_{i}} \\ =& \frac{N(N - n)}{n^{2}} \sum\limits_{i \in S} e^{2}_{i} - \frac{{N(N - n)}}{n^{2} (n - 1)} \sum\limits_{h \neq i \in S} e_{i} e_{h} + \frac{{N^{2}}}{n^{2}} \sum\limits_{i \in S} M_{i} (M_{i} - m_{i}) \frac{{\sigma^{2}_{i}}}{m_{i}} \\ \end{aligned}$$

from which

$$\begin{aligned} E \left\{ {\tilde{V}}_{2} ({\hat{Y}}_{\rm RAP2})\right\} =& E_{1} \left[E_{2} \left\{{\tilde{V}}_{2} ({\hat{Y}}_{\rm RAP2}) \right\} \right]\\ =& E_{1} \left\{ \frac{{N(N - n)}}{{n^{2}}} \sum\limits_{i \in S} e^{2}_{i} - \frac{{N(N - n)}}{{n^{2} (n - 1)}} \sum\limits_{h \neq i \in S} e_{i} e_{h} + \frac{{N^{2}}}{{n^{2}}} \sum\limits_{i \in S} M_{i} (M_{i} - m_{i}) \frac{{\sigma^{2}_{i}}}{{m_{i}}} \right\} \\ =& \frac{{N - n}}{n} \sum\limits_{i = 1}^{N} e^{2}_{i} - \frac{{N - n}}{{n(N - 1)}} \sum\limits_{h \neq i = 1}^{N} e_{i} e_{h} + \frac{N}{n} \sum\limits_{i = 1}^{N} M_{i} (M_{i} - m_{i}) \frac{{\sigma^{2}_{i}}}{{m_{i}}} \\ \end{aligned}.$$

Since the sum of e i extended to all the population units equals 0, it follows that

$$ \sum\limits_{h \neq i = 1}^{N} e_{i} e_{h} = - \sum\limits_{i = 1}^{N} e^{2}_{i} $$

in such a way that

$$\begin{aligned} E \left\{{\tilde{V}}_{2} ({\hat{Y}}_{\rm RAP2})\right\} =& \frac{{N - n}}{n} \sum\limits_{i = 1}^{N} e^{2}_{i} + \frac{{N - n}}{{n(N - 1)}} \sum\limits_{i = 1}^{N} e^{2}_{i} + \frac{N}{n} \sum\limits_{i = 1}^{N} M_{i} (M_{i} - m_{i}) \frac{{\sigma^{2}_{i}}}{{m_{i}}} \\ =& \frac{{N - n}}{n}\frac{N}{{N - 1}} \sum\limits_{i = 1}^{N} e^{2}_{i} + \frac{N}{n} \sum\limits_{i = 1}^{N} M_{i} (M_{i} - m_{i})\frac{{\sigma^{2}_{i}}}{{m_{i}}} \\ =& N(N - n)\frac{{\sigma^{2}_{e}}}{n} + \frac{N}{n} \sum\limits_{i = 1}^{N} M_{i} (M_{i} - m_{i})\frac{{\sigma^{2}_{i}}}{{m_{i}}}\\ =& V({\hat{Y}}_{\rm RAP2}).\\ \end{aligned}$$

However, the quantity (Eq. 17) cannot be computed from the sample information, since R and hence all the residuals \({\tilde{e}}_{i} = {\hat{Y}}_{i} - RX_{i}\) are unknown. Thus, as is customary in ratio estimation, the quantities \({\hat{e}}_{i} = {\hat{Y}}_{i} - {\hat{r}} x_{i}\) may be used as residuals. Since their sample mean equals 0, when used in Eq. 17 they give rise to Eq. 8.

Appendix 2

Eq. 11 constitutes a function of \({\hat{M}}_{l}\) and \({\hat{\mu}}_{l}\) for any lG. Thus, since

$$\frac{{\partial {\hat{\mu}}_{G}}}{{\partial {\hat{M}}_{l}}} = \frac{1}{{{\hat{M}}_{G}}}({\hat{\mu}}_{l} - {\hat{\mu}}_{G})$$

and

$$\frac{{\partial {\hat{\mu}}_{G}}}{{\partial {\hat{\mu}}_{l}}} = {\hat{w}}_{l} $$

then, the Taylor series expansion of \({\hat{\mu}}_{G}\) up to the first order gives rise to

$$\begin{aligned} {\hat{\mu}}_{G} \cong & \mu_{G} + \frac{1}{{M_{G}}} \sum\limits_{l \in G} (\mu_{l} - \mu_{G})({\hat{M}}_{l} - M_{l}) + \sum\limits_{l \in G} w_{l} ({\hat{\mu}}_{l} - \mu_{l}) \\ =& \frac{1}{{M_{G}}} \sum\limits_{l \in G} (\mu_{l} - \mu_{G}) {\hat{M}}_{l} + \sum\limits_{l \in G} w_{l} {\hat{\mu}}_{l} \\ \end{aligned}.$$
(18)

Thus, from Eq. 18 it is straightforward to prove that \({\hat{\mu}}_{G}\) turns out to be approximately unbiased with variance

$$V({\hat{\mu}}_{G}) \cong \frac{1}{{M^{2}_{G}}} \sum\limits_{l \in G} (\mu_{l} - \mu_{G})^{2} V({\hat{M}}_{l}) + \sum\limits_{l \in G} w^{2}_{l} V({\hat{\mu}}_{l}) + 2 \sum\limits_{l \in G} (\mu_{l} - \mu_{G}) w_{l} {\rm COV}({\hat{M}}_{l}, {\hat{\mu}}_{l}). $$
(19)

But, since

$$\begin{aligned} {\rm COV}({\hat{M}}_{l}, {\hat{\mu}}_{l}) =& E({\hat{M}}_{l} {\hat{\mu}}_{l}) - E({\hat{M}}_{l}) E({\hat{\mu}}_{l})\\ \cong & E \left\{ \frac{N}{n} \sum\limits_{i \in S} x_{j} \frac{{\frac{N}{n} \sum_{i \in S} M_{i} {\bar{y}}_{i}}}{{\frac{N}{n} \sum_{j \in S} x_{i}}} \right\} - M_{l} \mu_{l} \\ =& E \left\{ \frac{N}{n} \sum\limits_{i \in S} M_{i} {\bar{y}}_{i} \right\} - Y_{l} \\ =& E({\hat{Y}}_{l}) - Y_{l} = 0 , \\ \end{aligned}$$

quantity (Eq. 19) reduces to

$$V({\hat{\mu}}_{G}) \cong \frac{1}{{M^{2}_{G}}} \sum\limits_{l \in G} (\mu_{l} - \mu_{G})^{2} V({\hat{M}}_{l}) + \sum\limits_{l \in G} w^{2}_{l} V({\hat{\mu}}_{l}) $$

which may be trivially estimated by formula 12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corona, P., Fattorini, L. The assessment of tree row attributes by stratified two-stage sampling. Eur J Forest Res 125, 57–66 (2006). https://doi.org/10.1007/s10342-005-0078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-005-0078-2

Keywords

Navigation