Skip to main content
Log in

Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Spatial pattern of recruitment is an important factor influencing population dynamics of plant communities. The spatial pattern is determined by seed dispersal and by the spatial variability of germination and initial survival. In the process of forest expansion following farmland abandonment, mid- and late-successional species are often dispersed in pioneer forests by birds. This could result in an aggregated spatial pattern of seeds that could influence the dynamics of these species in mixed pioneer forests. In the sub-Mediterranean area, mid- and late-successional species such as Quercus pubescens (downy oak) and Fagus sylvatica (European beech) are expected to replace pioneer Pinus species. Using a point sampling method we demonstrated that beech and oak seedlings (height <2 m) have a clumped distribution in the understorey of pine. This could result from an aggregated dispersal by jays (dispersal effect) or from preferential recruitment in particular habitats (habitat effect). To test these hypotheses we proposed a statistical analysis of spatial patterns of regeneration of beech and oak. Ground cover variables (i.e. cover by rock outcrops, herbs, box shrubs, mosses or pine) did not differ significantly around seedlings as compared with random sample plots. Likewise, clumped seedlings had growth similar to isolated seedlings, thus refuting the hypothesis of preferential location in the most favourable microsites. Aggregated dispersal seems to be involved in the process of regeneration. Since beech and oak seedlings have contrasting ecological demands, we discuss the implication of this pattern for the replacement dynamics of pine by these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bossema I (1979) Jays and oaks: an eco-ethological study of a symbiosis. Behaviour 70:1–117

    Google Scholar 

  • Byth K, Ripley BD (1980) On sampling spatial patterns by distance methods. Biometrics 36:279–284

    Google Scholar 

  • Callaway RM (1992) Effect of shrubs on recruitment of Quercus douglasii and Quercus lobata in California. Ecology 73:2118–2128

    Google Scholar 

  • Cressie NA (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Debain S, Curt T, Lepart J (2003) Seed mass, seed dispersal capacity, and seedling performance in a Pinus sylvestris population. Ecoscience 10:168–175

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Everitt BS (2001) A handbook of statistical analyses using S-Plus, 2nd edn. Chapman & Hall/CRC, Cambridge

    Google Scholar 

  • Frost I, Rydin H (2000) Spatial pattern and size distribution of the animal-dispersed tree Quercus robur in two spruce-dominated forests. Ecoscience 7:38–44

    Google Scholar 

  • Gomez JM (2003) Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26:573–584

    Google Scholar 

  • Herrera CM, Jordano P (1981) Prunus mahaleb and birds: the high-efficiency seed dispersal system of temperate fruiting tree. Ecol Monogr 51:203–218

    Google Scholar 

  • Hulme PE (2002) Seed-eaters: seed dispersal, destruction and demography. In: Levey DJ, Silva WR, Galetti M (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CAB International, Wallingford

    Google Scholar 

  • Iida S (1996) Quantitative analysis of acorn transportation by rodents using magnetic locator. Vegetatio 124:39–43

    Google Scholar 

  • Inventaire-Forestier-National (2000). Département de l’Aveyron, Resultats du troisième inventaire forestier. Montpellier

  • Johnson WC, Thompson W (1989) The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. J Biogeogr 16:561–571

    Google Scholar 

  • Johnson WC, Adkisson CS, Crow TR, Dixon MD (1997) Nut caching by blue jays (Cyanocitta cristata L.): implications for tree demography. Am Midl Nat 138:357–370

    Google Scholar 

  • Jordano P, Godoy JA (2002) Frugivore-generated seed shadows: a landscape view of demographic and genetic effects. In: Levey DJ, Silva WR, Galetti M(eds) Seed dispersal and frugivory: ecology, evolution and conservation. CAB International, Wallingford

    Google Scholar 

  • Kobe RK (1996) Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol Monogr 66:181–201

    Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manag 149:33–46

    Google Scholar 

  • Lookingbill TR, Zavala MA (2000) Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. J Veg Sci 11:607–612

    Google Scholar 

  • Marres P (1936). Les Grands Causses: études de géographie physique et humaine, 2 vol. Tours, Arrault

    Google Scholar 

  • Marsteau C, Agrech G (1995). Typologie des stations forestières des Grands Causses. Clermont-Ferrand, Cemagref

    Google Scholar 

  • Mosandl R, and Kleinert A (1998) Development of oaks (Quercus petraea (Matt.) Liebl.) emerged from bird-dispersed seeds under old-growth pine (Pinus sylvestris L.) stands. For Ecol Manag 106:35–44

    Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    Google Scholar 

  • Nicolini E (2000) Nouvelles observations sur la morphologie des unités de croissance du hêtre (Fagus sylvatica L.). Symétrie des pousses, reflet de la vigueur des arbres. Can J Bot 78:77–87

    Google Scholar 

  • Nicolini E, Barthélémy D, Heuret P (2000) Influence de la densité du couvert forestier sur le développement architectural de jeunes chênes sessiles, Quercus petraea (Matt.) Liebl. (Fagaceae), en régénération forestière. Can J Bot 78:1–14

    Google Scholar 

  • Nilsson SG (1985) Ecological and evolutionary interactions between reproduction of beech Fagus sylvatica and seed eating animals. Oikos 44:157–164

    Google Scholar 

  • Pacala S, Canham CD, Saponara J, Silander JJA, Kobe RK, Ribbens E (1996) Forest models defined by fields measurements: estimation, error analysis and dynamics. Ecol Monogr 66:1–43

    Google Scholar 

  • Rees M, Condit R, Crawley M, Pacala S, Tilman, D (2001) Long-term studies of vegetation dynamics. Science 293:650–655

    Google Scholar 

  • Retana J, Espelta JM, Habrouk A, Ordonez JL, de Sola-Morales F (2002) Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 9:89–97

    Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York

    Google Scholar 

  • Rousset O, Lepart J (1999) Shrub facilitation of Quercus humilis (downy oak) dynamics on calcareous grasslands. J Veg Sci 10:493–502

    Google Scholar 

  • Rousset O, Lepart J (2000) Positive and negative interactions at different life stage of a colonizing species. J Ecol 88:401–412

    Google Scholar 

  • Rozas V, Fernandez Prieto JA (2000) Competition, mortality, and development of spatial patterns in two Cantabrian populations of Fagus sylvatica L. (Fagaceae). Ann Jard Bot Madr 58:117–131

    Google Scholar 

  • Schupp EW, Fuentes M (1995) Spatial patterns of seed dispersal and the unification of plant-population ecology. Ecoscience 2:267–275

    Google Scholar 

  • Szwagrzyk J, Czerwczak M (1993) Spatial patterns of trees in natural forests of East-Central Europe. J Veg Sci 4:469–476

    Google Scholar 

  • Tessier du Cros E, Le Tacon F (1981) Le Hêtre. Institut national de la recherche agronomique-Département des recherches forestières, Paris

    Google Scholar 

  • Tilman D, Kareiva P (1997) The role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH Walters SM, Webb DA (1964–1993) Flora Europaea. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Hees AFM (1997) Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Ann For Sci 54:9–18

    Google Scholar 

  • Vernet JL (1972) Nouvelle contribution à l’histoire de la végétation holocène des Grands Causses d’après les charbons de bois. Bull Soc Botan Fr 119:169–184

    Google Scholar 

  • Wyckoff PH, Clark JS (2002) The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J Ecol 90:604–615

    Google Scholar 

Download references

Acknowledgements

We would like to thank Francois Goreaud for insightful discussions and helpful suggestions. We thank Charlotte Faurie, Damien Provendier, Lluis Coll and Lluis Brotons for helpful suggestions. This work was completed as a part of the research project of the French Ministry of Agriculture, FNADT, Convention No. 0413-2002 “Gestion durable des boisements naturels feuillus en moyenne montagne: comprendre et favoriser le retour du chêne et du hêtre”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Kunstler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunstler, G., Curt, T. & Lepart, J. Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands. Eur J Forest Res 123, 331–337 (2004). https://doi.org/10.1007/s10342-004-0048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-004-0048-0

Keywords

Navigation