Skip to main content
Log in

Fatty Acid Characterization of “Gulcan 2 × Lauranne” and “Guara × Nurlu” F1 Hybrid Almond Population

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Almond (Amygdalus communis L.) is a type of hard-shell fruit species that is very important for human health due to its nutritional content. This importance is mainly due to its various oils, vitamins, and minerals. Almonds, which contain high amounts of monounsaturated fatty acids, are among the olive oil-like foods recommended for decreasing bad cholesterol and protecting against heart disease. In this study, a total of 166 F1 almond genotypes consisting of 77 F1 obtained from the hybridization of ‘Gulcan 2’ and ‘Lauranne’ almond varieties (‘Gulcan 2’ × ‘Lauranne’) and 89 F1 obtained from the crosses of ‘Guara’ and ‘Nurlu’ almond varieties and their parents (‘Guara’ × ‘Nurlu’) were investigated for biochemical characterization. Fatty acids were determined using gas chromatography/flame ionization detector (GC/FID) techniques for the 166 F1 hybrid genotypes. The mean and standard deviation values were calculated for the statistical analyses. For the ‘Gulcan 2’ × ‘Lauranne’ F1 population, oleic acid content ranged between 65.793 and 81.146%; linoleic acid content ranged between 9.532 and 22.041%; palmitic acid content ranged between 4.546 and 7.182%; stearic acid content ranged between 0.855 and 4.048%; and arachidic acid content ranged between 0.911 and 5.028%. For the ‘Guara’ × ‘Nurlu’ F1 population, oleic acid content ranged between 66.532 and 81.370%; linoleic acid content ranged between 10.516 and 22.310%; palmitic acid content ranged between 5.449 and 7.249%; stearic acid content ranged between 1.070 and 5.557%; and arachidic acid content ranged between 0.000 and 6.836%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abanoz YY, Okcu Z (2022) Biochemical content of cherry laurel (Prunus laurocerasus L.) fruits with edible coatings based on caseinat, Semperfresh and lecithin. Turk J Agric For 46(6):908–918

    Article  Google Scholar 

  • Agunbidae SO, Olanlokun JO (2006) Evaluation of some nutritional characteristics of indian almond (Prunus amygdalus). Nut 5(4):316–318

    Google Scholar 

  • Akbulut G (2018) Omega (n)-3 alpha linolenic and omega (n)-6 linoleic essential fatty acids and health. J Public Health 4(1):68–72

    Google Scholar 

  • Amarowicz R, Troszynska A, Shadidi F (2005) Antioxidant activity of almond seed exract and its fractions. J Food Lipids 12:344–358

    Article  CAS  Google Scholar 

  • Anonymous (2007) Nuts, almonds, USDA national nutrient database for standard reference, release 20. http://www.nal.usda.gov/fnic/foodcomp/cgi-bin/list_nut_edit.pl. Accessed 27 Aug 2008

  • AOAC (1990) Official methods of analysis of the AOAC, 15th edn. Association of official analytical chemists, Arlington (Methods 932.06, 925.09, 985.29, 923.03)

    Google Scholar 

  • Ari E, Mutlu N, Soylu I, Bedir H, Genc I, Deniz IG (2022) Morphological and agronomic characterization of Turkish Vaccaria hispanica (Mill.) Rauschert populations. Turk J Agric For 46(6):933–946

    Article  Google Scholar 

  • Blight EG, Dyer WJ (1959) A Rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  Google Scholar 

  • Celik F, Balta MF, Ercisli S, Gundogdu M, Karakaya O, Yavic A (2019) Tocopherol contents of almond genetic resources from eastern and western Turkey. Erwerbs-Obstbau 61(3):257–262

    Article  Google Scholar 

  • Ercisli S, Esitken A, Turkkal C, Orhan E (2005) The allelopathic effects of juglone and walnut leaf extracts on yield, growth, chemical and PNE composition of strawberry cv. Fern. Plant Soil Environ 51(6):283–387

    Article  CAS  Google Scholar 

  • Erturk Y, Ercisli S, Cakmakci R (2012) Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. J Plant Nutr 35(6):817–826

    Article  CAS  Google Scholar 

  • FAO (2020) Food and agriculture organization crop statistics. http://www.fao.org/faostat/en/#data/QC. Accessed: 22.10.2021

  • Gulsoy E, Balta F (2014) Protein, fat and fatty acid composition of selected almond (Prunus amygdalus Batch) genotypes from Yenipazar, Bozdoğan and Karacasu districts of Aydin province. Iğdır Univ J Inst Sci Tech 4(1):9–14

    Google Scholar 

  • Ichihara K, Shibahara A, Yamamoto K, Nakayama T (1996) An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids 31(5):535–539

    Article  CAS  PubMed  Google Scholar 

  • Ikinci A, Bolat I, Ercisli S, Kodad O (2014) Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biol Res 47:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Imani A, Amani G, Shamili M, Mousavi A, Hamed R, Rasouli M, Martínez-García PJ (2021) Diversity and broad sense heritability of phenotypic characteristic in almond cultivars and genotypes. Int J Hortic Sci Technol 8(3):281–289

    Google Scholar 

  • Kafkas S, Agar IT, Kaska N, Tatar Y (1995) Lipid characterization of some local and foreign almond cultivars (Amygdalus communis L.) grown in Pozantı-Kamışlı valley and Şanlıurfa-Koruklu. In: Proceedings of 2nd National Horticulture Conference, vol I, pp 398–402

    Google Scholar 

  • Karadag MG, Basalan CC (2014) The effect of different fatty acids on cognitive development: A current overview. J Neur 9(3):105–112

    Google Scholar 

  • Kodad O, Socias i Company R (2004) Fatty acid composition as evaluation criterion for kernel quality in almond breeding. Acta Hortic 663:301–304

    Article  CAS  Google Scholar 

  • Kornsteiner M, Wagner KH, Elmadfa I (2006) Tocopherols and total phenolics in 10 different nut types. Food Chem 98(2):381–387

    Article  CAS  Google Scholar 

  • Li S‑C, Liu Y‑H, Liu J‑F, Chang W‑H, Chen C‑M, Chen C‑Y (2011) Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 60(4):474–479

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gomez P, Sanchez-Perez R, Dicenta F, Howad W, Arus P, Gradziel TH (2007) Fruits and nuts. Chapter: 11. Genome mapping and moleculer breeding in plants, vol 4

    Google Scholar 

  • Matthaus B, Ozcan MM, Al Juhaimi F, Adiamo OQ, Alsawmahi ON, Ghafoor K, Babiker EE (2018) Effect of the harvest time on oil yield, fatty acid, tocopherol and sterol contents of developing almond and walnut kernels. J Oleo Sci 67(1):39–45

    Article  PubMed  Google Scholar 

  • Nadeem MA, Habyarimana E, Ciftci V, Nawaz MA, Karakoy T, Comertpay G, Shahid MQ, Hatipoglu R, Yeken MZ, Ali F, Ercisli S, Chung G, Baloch FS (2018) Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PLoS ONE 13(10):e205363

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathe SK, Seeram NP, Kshirsagar HH, Heber D, Lapsley KA (2008) Fatty acid composition of California grown almonds. J Food Sci 73(9):C607–C614

    Article  CAS  PubMed  Google Scholar 

  • Semma M (2002) Trans fatty acids: Properties, benefits and risks. J Health Sci 48(1):7–13

    Article  CAS  Google Scholar 

  • Spiller GA, Jenkins DJ, Cragen LN, Gates JE, Bosello O, Berra K, Rudd C, Stevenson M, Supergo R (1992) Effect of a diet high in monounsaturated fat from almonds on plasma cholesterol and lipoproteins. J Am Coll Nutr 11(2):126–130

    Article  CAS  PubMed  Google Scholar 

  • Taskesenlioglu MY, Ercisli S, Kupe M, Ercisli N (2022) History of grape in Anatolia and historical sustainable grape production in Erzincan agroecological conditions in Turkey. Sustainability 14:1496

    Article  Google Scholar 

  • Yang J, Liu RH, Halim L (2009) Antioxidant and antiproliferative of common adible nut seeds. LTW Food Sci Technol 42:1–8

    CAS  Google Scholar 

  • Yildirim AN, Akinci-Yildirim F, San B, Sesli Y (2016) Total oil content and fatty acid profile of some almond (Amygdalus communis L.) cultivars. Pol J Food Nutr Sci 66(3):173–178

    Article  CAS  Google Scholar 

  • Zamany AJ, Samadi GR, Kim DH, Keum YS, Saini RK (2017) Comparative study of tocopherol contents and fatty acids composition in twenty almond cultivars of Afghanistan. J Am Oil Chem Soc 94(6):805–817

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kader Ercik or Sezai Ercisli.

Ethics declarations

Conflict of interest

K. Ercik, S. Comlekcioglu, N. E. Kafkas, S. Ercisli, and H. I. Sagbas declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercik, K., Comlekcioglu, S., Kafkas, N.E. et al. Fatty Acid Characterization of “Gulcan 2 × Lauranne” and “Guara × Nurlu” F1 Hybrid Almond Population. Erwerbs-Obstbau 65, 1479–1487 (2023). https://doi.org/10.1007/s10341-023-00887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-023-00887-8

Keywords

Navigation