Skip to main content

Advertisement

Log in

Mineral Nutrition Management in Fruit Trees Under Salt Stress: A Review

  • Review Article / Übersichtsbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Salinity problems can be minimized to a certain level by the development of salt tolerant cultivars; however, this process is very slow. In the past, plant breeders achieved significant goals for the increase of tolerance in fruit crops through conventional breeding and artificial selection, but mineral nutrition management had better capability to enhance salt tolerance in several fruit crops. The sufficient application of different mineral nutrients, i.e., macronutrients and micronutrients, results in an increase of growth, development, and fruit production in trees growing in saline conditions. The plant defense mechanism is strengthened by the application of mineral nutrients against salt stress. The mineral nutrients are effective for increased production of antioxidant enzymes, reduction of hydrogen peroxide (H2O2) production, scavenging of toxic reactive oxygen species (ROS), and prevention of membrane damage. Hence, it is important to focus on the management of mineral nutrition in fruit trees in order to increase tolerance against salinity. Therefore, the current study provides greater insight into the management of mineral nutrition to increase salt tolerance in numerous tree fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abul-Soud MA, Abd-Elrahman SH (2016) Foliar selenium application to improve the tolerance of eggplant grown under salt stress conditions. Int J Plant Soil Sci 9:1–10

    Article  Google Scholar 

  • Ahmad R, Anjum MA (2020) Physiological and molecular basis of salinity tolerance in fruit crops. In: Srivastava AK, Hu C (eds) Fruit Crops Amsterdam, pp 445–464

  • Ahmad MSA, Hussain M, Saddiq R, Alvi AK (2007) Mungbean: a nickel indicator, accumulator or excluder? Bull Environ Contaminat Toxicol 78(5):319–324

    Article  CAS  Google Scholar 

  • Ahmad MSA, Hussain M, Ashraf M, Ahmad R, Ashraf MY (2009) Effect of nickel on seed germinability of some elite sunflower (Helianthus annuus L.) cultivars. Pak J Bot 41:1871–1882

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M (2017) Zinc application mitigates the adverse effects of NaCl stress on mustard (Brassica juncea L.) through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Inter 12(1):429–437

    CAS  Google Scholar 

  • Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer, Cham, pp 191–205

    Chapter  Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181(1):35–52

    Article  CAS  PubMed  Google Scholar 

  • Anjum MA, Muhammad HMD, Balal RM, Ahmad R (2019) Performance of two onion (Allium cepa L.) cultivars under two different planting systems in calcareous soil. J Hortic Sci Technol 2:54–59

    Article  Google Scholar 

  • Aras S, Eşitken A (2018) Physiological responses of cherry rootstocks to short term salinity. Erwerbs-Obstbau 60:161–164

    Article  Google Scholar 

  • Aras S, Eşitken A, Karakurt Y (2020) Morphological and physiological responses and some WRKY genes expression in cherry rootstocks under salt stress. Span J Agric Res 17(4):806

    Article  Google Scholar 

  • Ardıc M, Sekmen AH, Turkan I, Tokur S, Ozdemir F (2009) The effects of boron toxicity on root antioxidant systems of two chickpea (Cicer arietinum L.) cultivars. Plant Soil 314:99–108

    Article  Google Scholar 

  • Awad AS, Edwards DG, Campbell LC (1990) Phosphorus enhancement of salt tolerance of tomato. Crop Sci 30(1):123–128

    Article  Google Scholar 

  • Baccouch S, Chaoui A, El Ferjani E (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J Plant Nutr 24(7):1085–1097

    Article  CAS  Google Scholar 

  • Banuls J, Legaz F, Primo-Millo E (1991) Salinity-calcium interactions on growth and ionic concentration of citrus plants. Plant Soil 133(1):39–46

    Article  CAS  Google Scholar 

  • Barker AV, Bryson GM (2007) Nitrogen. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Florida, pp 21–50

    Google Scholar 

  • Behlau F, Belasque J, Graham JH, Leite RP (2010) Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees. Crop Prot 29(3):300–305

    Article  CAS  Google Scholar 

  • Berendse F, Kroon HD, Braakhekke WG (2007) Acquisition, use and loss of nutrients. In: Pugnaire F, Valladares F (eds) Functional Plant Ecology. Wageningen Agricultural University, Wageningen, pp 259–283

    Chapter  Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134(2):324–333

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Cramer MD, Hawkins HJ, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161(1):15–24

    Article  PubMed  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33(3):671–682

    Article  CAS  Google Scholar 

  • Dubey RS, Pessarakli M (1995) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 605–625

    Google Scholar 

  • Dutta T, Neelapu NRR, Surekha C (2020) Iron, zinc, and copper application in overcoming environmental stress. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. John Wiley & Sons, New Jersey, pp 582–596

    Chapter  Google Scholar 

  • El-Khawaga AS (2013) Effect of anti-salinity agents on growth and fruiting of different date palm cultivars. Asian J Crop Sci 5(1):65–80

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Faustino LI, Bulfe NM, Pinazo MA, Monteoliva SE, Graciano C (2013) Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area. Tree Physiol 33(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Li C, Ma F (2013) Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica 189:101–109

    Article  CAS  Google Scholar 

  • Garg BK, Burman U, Kathju S (2004) The influence of phosphorus nutrition on the physiological response of moth bean genotypes to drought. J Plant Nutr Soil Sci 167(4):503–508

    Article  CAS  Google Scholar 

  • Garriga M, Muñoz CA, Caligari PD, Retamales JB (2015) Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Sci Hortic 195:37–47

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2002) Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci Plant Nutr 48(3):357–364

    Article  CAS  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113(4):507–514

    Article  CAS  Google Scholar 

  • Gunes A, Soylemezoglu G, Inal A, Bagci EG, Coban S, Sahin O (2006) Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Sci Hortic 110(3):279–284

    Article  CAS  Google Scholar 

  • Hajiboland R (2012) Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York, pp 283–329

    Chapter  Google Scholar 

  • Han S, Tang N, Jiang HX, Yang LT, Li Y, Chen LS (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176(1):143–153

    Article  CAS  Google Scholar 

  • Haneklaus S, Bloem E, Schnug E, Kok LJ, de Stulen I (2007) Sulfur. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor and Francis, New York, pp 183–223

    Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143(3):1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Kirnak H, Higgs D, Saltali K (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci Hortic 93(1):65–74

    Article  CAS  Google Scholar 

  • Keleş Y, Ergün N, Öncel I (2011) Antioxidant enzyme activity affected by high boron concentration in sunflower and tomato seedlings. Commun Soil Sci Plant Anal 42(2):173–183

    Article  Google Scholar 

  • Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2:120–128

    Google Scholar 

  • Lautner S, Fromm J (2010) Calcium-dependent physiological processes in trees. Plant Biol 12(2):268–274

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Sebastiani L, Vitagliano C (2003) Physiological, biochemical, and molecular effects of in vitro induced iron deficiency in peach rootstock. J Plant Nutr 26:2149–2163

    Article  CAS  Google Scholar 

  • Loupassaki MH, Chartzoulakis KS, Digalaki NB, Androulakis II (2002) Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J Plant Nutr 25(11):2457–2482

    Article  CAS  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, London, p 342

    Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131(3):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengel K (1996) Principles of plant nutrition. International Potash Institute, p 593

    Google Scholar 

  • Mengel K, Barker AV, Pilbeam DJ (2007) Handbook of plant nutrition. Taylor and Francis, London, p 243

    Google Scholar 

  • Naeem M, Khan MMA (2009) Phosphorus ameliorates crop productivity, photosynthesis, nitrate reductase activity and nutrient accumulation in coffee senna (Senna occidentalis L.) under phosphorus-deficient soil. J Plant Interact 4(2):145–153

    Article  CAS  Google Scholar 

  • Oliveira MT, Medeiros CD, Frosi G, Santos MG (2014) Different mechanisms drive the performance of native and invasive woody species in response to leaf phosphorus supply during periods of drought stress and recovery. Plant Physiol Biochem 82:66–75

    Article  CAS  PubMed  Google Scholar 

  • Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinical Toxicol 3:495

    Google Scholar 

  • Pandya DH, Mer RK, Prajith PK, Pandey AN (2005) Effect of salt stress and manganese supply on growth of barley seedlings. J Plant Nutr 27(8):1361–1379

    Article  Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98(2):113–119

    Article  CAS  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MB, Fujita M (2019) Calcium-mediated growth regulation and abiotic stress tolerance in plants. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer Nature, Cham, pp 291–331

    Chapter  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opinion Plant Biol 12(3):267–274

    Article  CAS  Google Scholar 

  • Pinedo-Guerrero ZH, Cadenas-Pliego G, Ortega-Ortiz H, González-Morales S, Benavides-Mendoza A, Valdés-Reyna J, Juárez-Maldonado A (2020) Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agriculture 10(9):367

    Article  CAS  Google Scholar 

  • Quartacci MF (1991) Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. J Plant Nutr 14:687–699

    Article  Google Scholar 

  • Rana M, Bhantana P, Sun XC, Imran M, Shaaban M, Moussa M, Saleem MH, Elyamine A, Binyamin R, Alam M, Afzal J (2020) Molybdenum as an essential element for crops: An overview. Int J Sci Res Growth 24:18535

    Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defense operations. Trends Plant Sci 10(10):503–509

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163(8):847–855

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Reviews Agric Sci 3:1–24

    Article  Google Scholar 

  • Roy PR, Tahjib-Ul-Arif M, Polash MAS, Hossen MZ, Hossain MA (2019) Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 25(3):611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio JS, Garcia-Sanchez F, Rubio F, Martinez V (2009) Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Sci Hortic 119(2):79–87

    Article  CAS  Google Scholar 

  • Saneoka H, Moghaieb RE, Premachandra GS, Fujita K (2004) Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ Exp Bot 52(2):131–138

    Article  CAS  Google Scholar 

  • Sano T, Higaki T, Handa K, Kadota Y, Kuchitsu K, Hasezawa S, Hoffmann A, Endter J, Zimmermann U, Hedrich R, Roitsch T (2006) Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Lett 580(2):597–602

    Article  CAS  PubMed  Google Scholar 

  • Shahzad S, Ali S, Ahmad R, Ercisli S, Anjum MA (2021) Foliar application of silicon enhances growth, flower yield, quality and postharvest life of tuberose (Polianthes tuberosa L.) under saline conditions by improving antioxidant defense mechanism. Silicon 14:1511–1518

    Article  Google Scholar 

  • Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biol 331(8):587–596

    Article  CAS  Google Scholar 

  • Shi J, Yasuor H, Yermiyahu U, Zuo Q, Ben-Gal A (2014) Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles. Agric Water Manag 146:163–172

    Article  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci 101(23):8827–8832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DEC, Nogueira RJMC, Silva DMA, de Albuquerque MB (2011) Drought stress and plant nutrition. Plant Stress 5(1):32–41

    Google Scholar 

  • Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA (2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J Plant Physiol 170(9):801–813

    Article  CAS  PubMed  Google Scholar 

  • Tabassam T, Kanwal S, Naqvi SMS, Arshad A, Akhter ME (2016) Effect of manganese application on PS-II activity in rice under saline conditions. Int J Agric Biol 18:837–843

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associate, p 764

    Google Scholar 

  • Tavallali V, Rahemi M, Maftoun M, Panahi B, Karimi S, Ramezanian A, Vaezpour M (2009) Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Sci Hortic 123(2):272–279

    Article  CAS  Google Scholar 

  • Wang Z, Rahman AM, Wang G, Ludewig U, Shen J, Neumann G (2015) Hormonal interactions during cluster-root development in phosphate-deficient white lupin (Lupinus albus L.). J Plant Physiol 177:74–82

    Article  CAS  PubMed  Google Scholar 

  • Wu FZ, Bao WK, Li FL, Wu N (2008) Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. Photosynthetica 46:40–48

    Article  CAS  Google Scholar 

  • Xi W, Zhang Q, Lu X, Wei C, Yu S, Zhou Z (2014) Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem 164:219–227

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Mou B (2016) Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. J Am Soc Hort Sci 141(1):12–21

    Article  CAS  Google Scholar 

  • Yermiyahu U, Ben-Gal A, Keren R, Reid RJ (2008) Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304:73–87

    Article  CAS  Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nutr 31(3):593–612

    Article  CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ 55(5):213–221

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Function Plant Biol 36(5):409–430

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2011) Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res 19(1):8–18

    Article  CAS  Google Scholar 

  • Zhang M, Hu C, Sun X, Zhao X, Tan Q, Zhang Y, Li N (2014) Molybdenum affects photosynthesis and ionic homeostasis of Chinese cabbage under salinity stress. Commun Soil Sci Plant Anal 45(20):2660–2672

    Article  CAS  Google Scholar 

  • Zhigou Z, Derrick MO (2012) Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions. Am J Plant Sci 3(6):10

    Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34(2):455–472

    Article  CAS  Google Scholar 

  • Zirek NS, Uzal O (2020) The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Bot Horti Agrobot Clujnap 48(2):967–977

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akbar Anjum.

Ethics declarations

Conflict of interest

R. Ahmad and M. A. Anjum declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Anjum, M.A. Mineral Nutrition Management in Fruit Trees Under Salt Stress: A Review. Erwerbs-Obstbau 65, 397–405 (2023). https://doi.org/10.1007/s10341-023-00830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-023-00830-x

Keywords

Navigation