Skip to main content

Advertisement

Log in

Detection of the Potential of Seed Kernel for Food Industries Through Biochemical Evaluation of Diverse Mango Cultivars

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Mango is an important fruit with worldwide acceptance, extensive marketing, vast production, wide distribution, and benefits to human health. Mango wastes, namely, seed kernel (MSK) and peel, have high functional and nutritional potential. An investigation was undertaken on the mango with molecular analysis of 32 varieties to select genetically diverse genotypes followed by biochemical characterization of seed kernel of 10 varieties to assess the industrial potential of the kernel. Overall, 16 biochemical parameters and eight simple sequence repeat (SSR) primers were used to characterize the varieties of mango. Proximate composition was studied for the different mango varieties. Lipid profile, amino acid profile, and mangiferin profile were also analysed. For molecular analysis, DNA was extracted from leaf tissues. Biochemical analysis of the kernel revealed significant variability for phytochemicals among the genotypes. The kernel was rich in minerals (1.15%), oil (9.235%), starch (50%), and crude protein (10.36%). Amino acid profiling through liquid chromatography–tandem mass spectrometry (LC-MS/MS) suggested that kernels can be a source of eight essential amino acids. Steric and oleic acid represented the main fatty acids. Total phenol was in the range of 0.33–0.54%. Mangiferin content in the seed, analysed by LCMS, varied from 0.27 to 4.88 mg/g. Anti-nutritional factors were also detected in the kernel. The results of the current study suggest that significant varietal differences exist in mango for various phytochemicals. Based on the outcome of this experiment, it can be concluded that mango kernel is an economical source of valued food and nutraceutical components, which can be exploited in various food and feed industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla AEM, Darwish SM, Ayad EHE, El-hamahmy RM (2007) Egyptian mango by-product 1. compositional quality of mango seed kernel. Food Chem 103:1134–1140

    CAS  Google Scholar 

  • Abdel-Aty AM, Salama WH, Hamed MB et al (2018) Phenolic-antioxidant capacity of mango seed kernels: therapeutic effect against viper venoms. Rev Bras Farmacogn 28:594–601

    CAS  Google Scholar 

  • American Association of Cereal Chemists (AACC) (1983) Approved methods of the AACC, 8th ed., American Association Cereal Chemists, St. Paul, MN, USA

    Google Scholar 

  • Ashoush IS, Gadallah MGE (2011) Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World J Dairy Food Sci 6:35–42

    Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (1965) Official methods of analysis, 10th edn. AOAC, Washington, DC.

    Google Scholar 

  • Barreto JC, Trevisan MT, Hull WE et al (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J Agric Food Chem 56(14):5599–5610

    CAS  PubMed  Google Scholar 

  • Bazina N, He J (2018) Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. J Food Sci Technol 55(8):3085–3092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begum H, Reddy MT, Surapaneni M, Narshimulu G, Reddy BP (2013) Microsatellite analysis of intracultivar diversity in ‘Chinnarasam’ mango from Andhra Pradesh, India. Afr Crop Sci J 21(2):109–117

    Google Scholar 

  • Bray HG, Thorpe WV (1954) Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal 1(27):52

    Google Scholar 

  • Chandel SRS (1997) A handbook of agricultural statistics. Achal Prakashan Mandir, Kanpur, India

    Google Scholar 

  • Da Silva A, Jorge N (2014) Bioactive compounds of the lipid fractions of agroindustrial waste. Food Res Int 66:493–500

    Google Scholar 

  • Dakare MA, Danladi AA, Agbaji AS, Atawodi SE (2014) Chemical composition and antinutrient contents of yellow maize, raw and processed composite mango (Mangifera indica L.) seed kernel from Zaria, Kaduna State Nigeria. Int J Adv Res 2(7):90–97

    Google Scholar 

  • Das PC, Khan J, Rahman S, Majumderd S, Islam M (2019) Comparison of the physico-chemical and functional properties of mango kernel flour with wheat flour and development of mango kernel flour based composite cakes. NFS Jl 17:1–7

    Google Scholar 

  • Dhingra S, Kapoor AC (1985) Nutritive value of mango seed kernel. J Sci Food Agri 36:752–756

    CAS  Google Scholar 

  • Diarra SS (2014) Potential of mango (Mangifera indica L.) seed kernel as a feed ingredient for poultry: a review. Worlds Poult Sci 70:279–288

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dubois M, Gills K, Hemilton J, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • El-safy FS, Salem RH, Abdel-ghany ME (2012) Chemical and nutritional evaluation of different seed flours as novel sources of protein. World J Dairy Food Sci 7(1):59–65

    Google Scholar 

  • Fowomola MA (2010) Some nutrients and antinutrients contents of mango (Magnifera indica L.) seed. Afr J Food Sci 4(8):472–476

    CAS  Google Scholar 

  • Gumte SV, Taur AT, Sawate AR, Kshirsagar RB (2018) Effect of fortification of mango (Mangifera indica) kernel flour on nutritional, phytochemical and textural properties of biscuits. J Pharmacog Phytochem 7(3):1630–1637

    CAS  Google Scholar 

  • Hammerstrand GE, Black LT, Glover JD (1981) Trypsin inhibitor in soy products: modification of the standard analytical procedure. Cereal Chem 58:42–45

    Google Scholar 

  • Harborne JB (1973) Phytochemical methods. Chapman and Hall, London, pp 49–188

    Google Scholar 

  • Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sulta MT (2017) Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 16:84

    PubMed  PubMed Central  Google Scholar 

  • Jahurul M, Zaidul I, Ghafoor K et al (2015) Mango (Mangifera indica L.) by-products and their valuable components: a review. Food Chem 183:173–180

    CAS  PubMed  Google Scholar 

  • Jin J, Warda P, Mu H, Zhang Y, Jie L et al (2016) Characteristics of mango kernel fats extracted from 11 china-specific varieties and their typically fractionated fractions. J Am Oil Chem Soc 93(8):1115–1125

    CAS  Google Scholar 

  • Kaur A, Brar JK (2017) Use of mango seed kernels for the development of antioxidant rich health foods. Food Sci Res J 8(2):368–374

    Google Scholar 

  • Kittiphoom S (2012) Utilization of mango seed. Int Food Res J 19(4):1325–1335

    CAS  Google Scholar 

  • Koji M, Satoshi S, Hisao K (1987) Measurement of tryptophan in peptides by acid hydrolysis in the presence of phenol and its application to the amino acid sequence of a sea anemone toxin. Agri Biol Chem 51:1607–1616

    Google Scholar 

  • Lakshminarayana G, Chandrasekhara RT, Ramalingaswamy PA (1983) Varietal variations in content, characteristics and composition of mango seeds and fat. J Am Oil Chem Soc 60(1):88–89

    CAS  Google Scholar 

  • Lane CS (2015) Rapid LC-MS/MS Analysis of free amino acids in extracellular matrix. biomarkers and omics. Document number: RUO-MKT-02-3777‑A, pp 17–19

    Google Scholar 

  • Luo F, Lv Q, Zhao Y, Hu G, Huang G, Zhang J, Sun C, Li X, Chen K (2012) Quantification and purification of mangiferin from chinese mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2-induced stress. Int J Mol Sci 13:11260–11274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahato AK, Sharma N, Singh A, Srivastav M, Singh SK, Singh AK, Sharma TR, Singh NK (2016) Leaf transcriptome sequencing for identifying genic-SSR markers and SNP heterozygosity in crossbred mango variety Amrapali (Mangifera indica L.). PLoS One 11(10):e164325

    PubMed  PubMed Central  Google Scholar 

  • Makkar HPS, Blummel M, Boroway NK, Becker K (1993) Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J Sci Food Agri 61:161–165

    CAS  Google Scholar 

  • Mishra R, Prasad R, Verma A (2018) Nutritional composition, anti-nutritional factors and antioxidant activity of waste seeds (Mango seeds and Tamarind seeds). J Pharmacog Phytochem 7(3):1078–1080

    Google Scholar 

  • Mutua JK, Imathiu S, Owino W (2017) Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Sci Nutr 5(2):349–357

    CAS  PubMed  Google Scholar 

  • Nayak P, Rayaguru K (2018) Studies on extraction of starch from dried and fresh mango seed kernel. J Agric Sci 10(18):7192–7195

    CAS  Google Scholar 

  • Nazish T, Shabbi G, Ali A, Naeem M, Javed M, Batool S, Hussain S, Aslam K, Seher R, Tahir M, Baber M (2017) Molecular diversity of Pakistani mango (Mangifera indica L.) varieties based on microsatellite markers. Genet Mol Res 16(2):gmr16029560

    Google Scholar 

  • Omer HAA, Tawila MA, Gad SM et al (2019) Mango (Mangifera indica) seed kernels as untraditional source of energy in Rahmani sheep rations. Bull Natl Res Centre 43:176

    Google Scholar 

  • Rajan S, Surya D, Vijaya P, Prabhu K, Thirunalasundari T (2011). Pharmacognostical and phytochemical studies of Mangifera indica L. seed kernel. J Pharmacy Res 4(11):4272–4275

    Google Scholar 

  • Rashwan MRA (1990) Fatty acids composition, neutral lipids and phospholipids fractionation in the kernel lipids of the mango varieties. Assiut Jf Agri Sci 21(1):105–117

    Google Scholar 

  • Ribeiro SMR, Barbosa LCA, Queiroz JH et al (2008) Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem 110:620–626

    CAS  Google Scholar 

  • Sadasivam S, Manickam A (1992) Biochemical methods for agriculture sciences. Wiley Eastern, New Delhi

    Google Scholar 

  • Sagar A, Singh RP (2016) Biochemical estimation of nutritive parameters in waste seed kernel of mango (Mangifera indica L.). Int J Agril Invent 1(1):113–115

    Google Scholar 

  • Saran P, Kumar R (2011) Boron deficiency disorders in mango (Mangifera indica): Field screening, nutrient composition and amelioration by boron application. Ind J Agri Sci 81(6):506–510

    CAS  Google Scholar 

  • Saran P, Rajput KS, Meena RP et al (2020) Mango (Mangifera indica L.) germplasm screening against Burl: effect on plant morphology and graft-incompatibility and orchard topography in India. Erwerbs-Obstbau 62:315–325

    Google Scholar 

  • Singh A, Singh AK, Singh SK (2012) SSR markers reveal genetic diversity in closely related mango hybrids. Ind J Horti 69(3):299–305

    Google Scholar 

  • Tayana N, Inthakusol W, Duangdee N, Chewchinda S, Pandith H, Kongkiatpaiboon S (2019) Mangiferin content in different parts of mango tree (Mangifera indica L.) in Thailand. Songklanakarin J Sci Tech 41(3):522–528

    CAS  Google Scholar 

  • Yadav K, Garg N, Verma A, Trivedi M (2017) Optimization and extraction of oil from mango seed kernel (Mangifera indica). Indian J Agric Sci 87:943–946

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anand Agricultural University for providing the laboratory facility during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the research (NJP, SK); designing of the experiments (SDP, JJD); execution of field/laboratory experiments and data collection (SDP, AAS, SK, NJP); analysis of data and interpretation (SK, AAS, NJP); preparation of manuscript (SDP, SK, AAS).

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Conflict of interest

S.D. Patel, N.J. Patel, A.A. Sakure, S. Kumar and J.J. Dhruv declare that they have no competing interests.

Supplementary Information

Supplementary Tables S1–S2. Table S1: Mass spectrometry parameters for detection of amino acids in MSK powder

10341_2022_759_MOESM2_ESM.docx

Supplementary Figures S1–S3. Supplementary Figure S1: LC-MS based amino acid profile of MSK powder, Supplementary Figure S2: LC-MS chromatograms of mangiferin for MSK powder

Rights and permissions

Springer Nature oder sein Lizenzgeber hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.D., Patel, N.J., Sakure, A.A. et al. Detection of the Potential of Seed Kernel for Food Industries Through Biochemical Evaluation of Diverse Mango Cultivars. Erwerbs-Obstbau 65, 2427–2436 (2023). https://doi.org/10.1007/s10341-022-00759-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-022-00759-7

Keywords

Navigation