Skip to main content

Advertisement

Log in

Determination of Energy Efficiency and Greenhouse Gas (GHG) Emissions in Organic Almond Production in Turkey

Untersuchung der Energieeffizienz und der Treibhausgasemissionen (THG-Emissionen) im Bio-Mandelanbau in der Türkei

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

The purpose of this study is to make the energy efficiency and greenhouse gas (GHG) emissions of organic almond production. This study was performed for 2016 production season in Adıyaman province of Turkey in 2017. The data provided from study were collected from 93 different farms by face to face surveys with full count method. The agricultural input energies and output energies used in organic almond production were calculated to determine the energy efficiency analysis. According to the research findings, the energy inputs in organic almond production were calculated respectively as 7320.30 MJ ha−1 (37.21%) diesel fuel energy, 5421.17 MJ ha−1 (27.56%) machinery energy, 3818.86 MJ ha−1 (19.41%) human labour energy, 1632 MJ ha−1 (8.30%) irrigation energy, 1344 MJ ha−1 (6.83%) farmyard manure energy, 128.15 MJ ha−1 (0.65%) organic chemicals energy and 5.94 MJ ha−1 (0.03%) lime energy. Total input energy was calculated as 19,670.42 MJ ha−1. Energy values of organic almond yield were calculated as 39,811.80 MJ ha−1. Energy efficiency, specific energy, energy productivity and net energy calculations were calculated respectively as 2.02, 14.05 MJ kg−1, 0.07 kg MJ−1 and 20,141.38 MJ ha−1. The consumed total energy input in organic almond production could be classified as 64.93% direct, 35.07% indirect, 34.54% renewable and 65.46% non-renewable. Total GHG emission was calculated as 2518.46 kg CO2‑eqha−1 for organic almond production with the greatest portions for human labour (54.16%). The human labour followed up machine usage (15.28%), diesel fuel consumption (14.25%), water consumption of irrigation (10.80%), farmyard manure usage (5.16%), organic chemicals usage (0.34%) and lime usage (0.02%), respectively. Additionally, GHG ratio value was calculated as 1.80 kg CO2‑eqkg−1 in organic almond production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acaroğlu M (1998) Energy from biomass and applications. Selcuk University, Graduate School of Natural and Applied Sciences. Texbook (unpublished-Turkish)

  • Anonymous (2016) The Adıyaman governorship. http://www.adiyaman.gov.tr/iklim (in Turkish)

  • Aydın B, Aktürk D, Ozkan E, Hurma H, Kiracı MA (2017) Armut üretiminde karşılaştırmalı enerji kullanım etkinliği ve ekonomik analiz: Trakya Bölgesi örneği. Türk Tarım-gıda Bilim Teknol Derg 5(9):1072–1079

    Google Scholar 

  • Aydın B, Aktürk D, Ozkan E, Hurma H, Kiracı MA (2018) Comparative energy use efficiency and economic analysis of apple production in Turkey: case of Thrace Region. Erwerbs-Obstbau. https://doi.org/10.1007/s10341-018-0387-5

    Article  Google Scholar 

  • Azizi A, Heidari S (2013) A comparative study on energy balance and economical indices in irrigated and dry land barley production systems. Int J Environ Sci Technol 10:1019–1028

    Google Scholar 

  • Baran MF, Gökdoğan O, Oğuz HI (2017) Determining the energy usage efficiency of walnut (Juglans regia L.) cultivation in Turkey. Erwerbs-Obstbau 59:77–82

    Google Scholar 

  • Beigi M, Torki-Harchegani M, Ghanbarian D (2016) Energy use efficiency and economical analysis of almond production: a case study in Chaharmahal-Va-Bakhtiari province, Iran. Energy Effic 9:745–754

    Google Scholar 

  • Bilalis D, Kamariari P‑E, Karkanis A, Efthimiadou A, Zorpas A, Kakabouki I (2013) Energy inputs, output and productivity in organic and conventional maize and tomato production, under Mediterranean conditions. Not Bot Horti Agrobot 41(1):190–194

    Google Scholar 

  • Clark S, Khoshnevisan B, Sefeedpari P (2016) Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: student farm case study. Ecol Eng 88:186–194

    Google Scholar 

  • Demircan V, Ekinci K, Keener HM, Akbolat D, Ekinci C (2006) Energy and economic analysis of sweet cherry production in Turkey: a case study from Isparta province. Energy Convers Manag 47:1761–1769

    Google Scholar 

  • Ekinci K, Akbolat D, Demircan V, Ekinci C (2005) Determination of energy use efficiency apple production in Isparta province. Turkey. In: 3th Renewable Energy Sources Symposium Mersin, pp 19–21 (in Turkish)

    Google Scholar 

  • Gezer I, Acaroglu M, Haciseferogullari H (2003) Use of energy and labor in apricot agriculture in Turkey. Biomass Bioenergy 24:215–219

    Google Scholar 

  • Gökdoğan O, Oğuz HI, Baran MF (2017) Energy input-output analysis in organic mulberry (Morus spp.) production in Turkey: a case study Adıyaman-Tut region. Erwerbs-Obstbau 59(4):325–330

    Google Scholar 

  • Göktolga ZG, Gözener B, Karkacıer O (2006) Seftali üretiminde enerji kullanımı: Tokat ili örneği. Gaziosmanpaşa Üniv Ziraat Fak Derg 23(2):39–44

    Google Scholar 

  • Gündoğmuş E (2006) Energy use on organic farming: a comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Convers Manag 47:3351–3359

    Google Scholar 

  • Gündoğmuş E (2013) Modelling and sensitivity analysis of energy inputs for walnut production. Actual Probl Econ 2(140):188–197

    Google Scholar 

  • Guzman GI, Alonso AM (2008) A comparison of energy use in conventional and organic olive oil production in Spain. Agric Syst 98:167–176

    Google Scholar 

  • Houshyar E, Dalgaard T, Tarazgar MH, Jorgensen U (2015) Energy input for tomato production what economy says, and what is good for the environment. J Clean Prod 89:99–109

    Google Scholar 

  • Houshyar E, Mahmoodi-Eshkaftaki M, Azadi H (2017) Impacts of technological change on energy use efficiency and GHG mitigation of pomegranate: application of dynamic data envelopment analysis models. J Clean Prod 162:1180–1191

    Google Scholar 

  • Hughes DJ, West JS, Atkins SD, Gladders P, Jeger MJ, Fitt BD (2011) Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production. Pest Manag Sci 67:1082–1092

    PubMed  CAS  Google Scholar 

  • Kaltsas AM, Mamolos AP, Tsatsarelis CA, Nanos GD, Kalburtji KL (2007) Energy budget in organic and conventional olive groves. Agric Ecosyst Environ 122(2):243–251

    Google Scholar 

  • Karaağaç MA, Aykanat S, Çakır B, Eren O, Turgut MM, Barut ZB, Oztürk HH (2011) Energy balance of wheat and maize crops production in Hacıali undertaking. In: 11th International Congress on Mechanization and Energy in Agriculture Congress Istanbul, Turkey, 21–23 September, pp 388–391

    Google Scholar 

  • Karagölge C, Peker K (2002) Tarım ekonomisi araştırmalarında tabakalı örnekleme yönteminin kullanılması. Atatürk Univ Ziraat Fak Derg 33(3):313–316

    Google Scholar 

  • Khoshnevisan B, Rafiee S, Mousazadeh H (2013) Environmental impact assessment of open field and greenhouse strawberry production. Eur J Agron 50:29–37

    Google Scholar 

  • Khoshnevisan B, Shariati HM, Rafiee S, Mousazadeh H (2014) Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renew Sustain Energy Rev 29:316–324

    CAS  Google Scholar 

  • Koçtürk OM, Engindeniz S (2009) Energy and cost analysis of sultana grape growing: a case study of Manisa, west Turkey. Afr J Agric Res 4(10):938–943

    Google Scholar 

  • Kızılaslan H (2009) Input-output energy analysis of cherries production in Tokat province of Turkey. Appl Energy 86:1354–1358

    Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990

    PubMed  CAS  Google Scholar 

  • Mandal KG, Saha KP, Ghosh PK, Hati KM, Bandyopadhyay KK (2002) Bioenergy and economic analysis of soybean based crop production systems in central India. Biomass Bioenergy 23:337–345

    Google Scholar 

  • Mani I, Kumar P, Panwar JS, Kant K (2007) Variation in energy consumption in production of wheat-maize with varying altitudes in hill regions of Himachal Prades, India. Energy 32:2336–2339

    Google Scholar 

  • Mardani A, Taghavifar H (2016) An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran. Renew Sustain Energy Rev 54:918–924

    Google Scholar 

  • Mohammadi A, Rafiee S, Mohtasebi SS, Rafiee H (2010) Energy inputs-yield relationship and cost analysis of kiwifruit production in Iran. Renew Energy 35:1071–1075

    Google Scholar 

  • Mohammadi A, Tabatabaeefar A, Shahin S, Rafiee S, Keyhani A (2008) Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Convers Manag 49:3566–3570

    Google Scholar 

  • Nabavi-Pelesaraei A, Abdi R, Rafiee S (2016) Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. J Saudi Soc Agric Sci 15(1):38–47

    Google Scholar 

  • Nguyen TLT, Hermansen JE (2012) System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl Energy 89:254–261

    CAS  Google Scholar 

  • Nikkhah A, Royan M, Khojastehpour M, Bacenetti J (2017) Environmental impacts modeling of Iranian peach production. Renew Sustain Energy Rev 75:677–682

    CAS  Google Scholar 

  • Ozalp A, Yılmaz S, Ertekin C, Yılmaz I (2018) Energy analysis and emissions of greenhouse gases of pomegranate production in Antalya province of Turkey. Erwerbs-Obstbau 60:321–329

    Google Scholar 

  • Ozkan B, Akçaöz H, Karadeniz F (2004) Energy requirement and economic analysis of citrus production in Turkey. Energy Convers Manag 45:1821–1830

    Google Scholar 

  • Pervanchon F, Bockstaller C, Girardin P (2002) Assessment of energy use in arable farming systems by means of an agro ecological indicator: the energy indicator. Agric Syst 72:149–172

    Google Scholar 

  • Pimentel D (1980) Handbook of energy utilization in agriculture. CRC, Boca Raton

    Google Scholar 

  • Pishgar-Komleh SH, Ghahderijani M, Sefeedpari P (2012) Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. J Clean Prod 33:183–191

    Google Scholar 

  • Qasemi-Kordkheili P, Nabavi-Pelesaraei A (2014) Optimization of energy required and potential of greenhouse gas emissions reductions for nectarine production using data envelopment analysis approach. Int J Energy Environ 5(2):207–218

    CAS  Google Scholar 

  • Qasemi-Kordkheili P, Kazemi N, Hemmati A, Taki M (2013) Energy consumption, input-output relationship and economic analysis for nectarine production in Sari region, Iran. Int J Agric Crop Sci 5(2):125–131

    Google Scholar 

  • Rajaeifar MA, Akram A, Ghobadian B, Rafiee S, Heidari MD (2014) Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy 66:139–149

    CAS  Google Scholar 

  • Singh JM (2002) On garden energy use pattern in different cropping systems in Haryana, India. Master of Science. International Institute of Management University of Flensburg, Sustainable Energy Systems and Management

  • Singh H, Mishra D, Nahar NM, Ranjan M (2003) Energy use pattern in production agriculture of a typical village in Arid Zone India (Part II). Energy Convers Manag 44:1053–1067

    Google Scholar 

  • Tabatabaie SMH, Rafiee S, Keyhani A (2012) Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy 44:211–216

    Google Scholar 

  • Taghavifar H, Mardani A (2015) Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using artificial neural network. J Clean Prod 87:159–167

    Google Scholar 

  • Torki-Harchegani M, Ebrahimi R, Mahmoodi-Eshkaftaki M (2015) Almond production in Iran: an analysis of energy use efficiency (2008–2011). Renew Sustain Energy Rev 41:217–224

    Google Scholar 

  • Uhlin H (1998) Why energy productivity is increasing: an I‑O analysis of Swedish agriculture. Agric Syst 56:443–465

    Google Scholar 

Download references

Acknowledgements

This study was submitted as oral abstract in XIX. World Congress of CIGR (Commission Internationale du Genie Rural) 22–25 April 2018, Antalya-Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Gökdoğan.

Ethics declarations

Conflict of interest

M. F. Baran, O. Eren, O. Gökdoğan and H. I. Oğuz declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, M.F., Eren, O., Gökdoğan, O. et al. Determination of Energy Efficiency and Greenhouse Gas (GHG) Emissions in Organic Almond Production in Turkey. Erwerbs-Obstbau 62, 341–346 (2020). https://doi.org/10.1007/s10341-020-00507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-020-00507-9

Keywords

Schlüsselwörter

Navigation