Andow DA, Farias JR, Horikoshi RJ et al (2015) Dynamics of cannibalism in equal-aged cohorts of Spodoptera frugiperda. Ecol Entomol 40:229–236. https://doi.org/10.1111/een.12178
Article
Google Scholar
Baloch MN, Fan J, Haseeb M, Zhang R (2020) Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Central Asia. Insects 11:172. https://doi.org/10.3390/insects11030172
Article
PubMed Central
Google Scholar
Barfield CS, Mitchell ER, Poeb SL (1978) A temperature-dependent model for fall armyworm development. Ann Entomol Soc Am 71:70–74. https://doi.org/10.1093/aesa/71.1.70
Article
Google Scholar
Barros EM, Torres JB, Bueno AF (2010) Oviposição, desenvolvimento e reprodução de Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) em diferentes hospedeiros de importância econômica. Neotrop Entomol 39:996–1001. https://doi.org/10.1590/S1519-566X2010000600023
Article
PubMed
Google Scholar
Baudron F, Zaman-Allah MA, Chaipa I et al (2019) Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Cro Prot 120:141–150. https://doi.org/10.1016/j.cropro.2019.01.028
Article
Google Scholar
Buffoni G, Pasquali S (2007) Structured population dynamics: continuous size and discontinuous stage structures. J Math Biol 54:555–595. https://doi.org/10.1007/s00285-006-0058-2
Article
PubMed
Google Scholar
Busato GR, Grützmacher AD, Garcia MS et al (2005) Thermal requirements and estimate of the number of generations of biotypes “corn” and “rice” of Spodoptera frugiperda. Pesqui Agropecu Bras 40:329–335. https://doi.org/10.1590/S0100-204X2005000400003
Article
Google Scholar
Capinera JL (2002) Fall armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae): EENY098/IN255, rev. 7/2000. EDIS. https://doi.org/10.32473/edis-in255-2000
Article
Google Scholar
Chapman JW (1999) Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav Ecol 10:298–303. https://doi.org/10.1093/beheco/10.3.298
Article
Google Scholar
Chapman JW, Williams T, Martínez AM et al (2000) Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav Ecol Sociobiol 48:321–327. https://doi.org/10.1007/s002650000237
Article
Google Scholar
Chen Y-C, Chen D-F, Yang M-F, Liu J-F (2022) The effect of temperatures and hosts on the life cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 13:211. https://doi.org/10.3390/insects13020211
Article
PubMed
PubMed Central
Google Scholar
Cock MJW, Beseh PK, Buddie AG et al (2017) Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci Rep 7:4103. https://doi.org/10.1038/s41598-017-04238-y
CAS
Article
PubMed
PubMed Central
Google Scholar
da Silva DM, de Bueno AF, Andrade K et al (2017) Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci agric Piracicaba Braz 74:18–31. https://doi.org/10.1590/1678-992x-2015-0160
Article
Google Scholar
Day R, Abrahams P, Bateman M et al (2017) Fall armyworm: impacts and implications for Africa. Outlook Pest Manag 28:196–201. https://doi.org/10.1564/v28_oct_02
Article
Google Scholar
de Freitas Bueno RCO, de Freitas BA, Moscardi F et al (2011) Lepidopteran larva consumption of soybean foliage: basis for developing multiple-species economic thresholds for pest management decisions. Pest Manag Sci 67:170–174. https://doi.org/10.1002/ps.2047
CAS
Article
Google Scholar
Devi S (2018) Fall armyworm threatens food security in southern Africa. Lancet 391:727. https://doi.org/10.1016/S0140-6736(18)30431-8
Article
PubMed
Google Scholar
Du Plessis H, Schlemmer M-L, Van den Berg J (2020) The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11:228. https://doi.org/10.3390/insects11040228
Article
PubMed Central
Google Scholar
Du Plessis H, Van den Berg J, Ota N, Kriticos DJ (2018) Spodoptera frugiperda. Fall Armyworm, CLIMEX modelling CSIRO-InSTePP Pest Geography. https://pra.eppo.int/pra/1337e7c5-1744-4a2b-a782-b344ad06d4e6. Accessed 14 Mar 2021
Early R, González-Moreno P, Murphy ST, Day R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40:25–50. https://doi.org/10.3897/neobiota.40.28165
Article
Google Scholar
EFSA, Kinkar M, Delbianco A, Vos S (2020) Pest survey card on Spodoptera frugiperda. EFSA J 17:7. https://doi.org/10.2903/sp.efsa.2020.EN-1895
Article
Google Scholar
EFSA PLH Panel, Jeger M, Bragard C et al (2017) Pest categorisation of Spodoptera frugiperda. EFSA J 15:7. https://doi.org/10.2903/j.efsa.2017.4927
Article
Google Scholar
EFSA PLH Panel, Jeger M, Bragard C et al (2018a) Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J 16:8. https://doi.org/10.2903/j.efsa.2018.5351
CAS
Article
Google Scholar
EFSA PLH Panel, Jeger M, Bragard C et al (2018b) Guidance on quantitative pest risk assessment. EFSA J 16:e05350. https://doi.org/10.2903/j.efsa.2018.5350
Google Scholar
EPPO (2019a) EPPO reporting service 2019/136. First report of Spodoptera frugiperda in Egypt. https://gd.eppo.int/reporting/article-6566. Accessed 15 Mar 2021
EPPO (2019b) EPPO reporting service 2019/053. Spodoptera frugiperda continues to spread in Asia. https://gd.eppo.int/reporting/article-6483. Accessed 17 Mar 2021
EPPO (2019c) EPPO reporting service 2019/006. First report of Spodoptera frugiperda in Thailand. https://gd.eppo.int/reporting/article-6436. Accessed 17 Mar 2021
EPPO (2019d) EPPO reporting service 2019d/029. First report of Spodoptera frugiperda in China. https://gd.eppo.int/reporting/article-6459. Accessed 18 Mar 2021
EPPO (2019e) EPPO reporting service 2019/138. First report of Spodoptera frugiperda in Japan. https://gd.eppo.int/reporting/article-6568. Accessed 12 Dec 2021
EPPO (2020a) EPPO reporting service 2020/143. First report of Spodoptera frugiperda in Mauritania. https://gd.eppo.int/reporting/article-6821. Accessed 13 Dec 2021
EPPO (2020b) EPPO reporting service 2020/213. First report of Spodoptera frugiperda in Jordan. https://gd.eppo.int/reporting/article-6891. Accessed 13 Apr 2021
EPPO (2020c) EPPO reporting service 2020/161. First report of Spodoptera frugiperda in Israel. https://gd.eppo.int/reporting/article-6839. Accessed 27 Apr 2021
EPPO (2020d) EPPO Reporting service 2020/092. First report of Spodoptera frugiperda in United Arab Emirates. https://gd.eppo.int/reporting/article-6770. Accessed 21 May 2021
EPPO (2020e) EPPO reporting service 2020/142. First report of Spodoptera frugiperda in Timor-Leste. https://gd.eppo.int/reporting/article-6820. Accessed 22 Dec 2021
EPPO (2020f) EPPO reporting service 2020/031. First report of Spodoptera frugiperda in Australia. https://gd.eppo.int/reporting/article-6709. Accessed 12 Mar 2021
EPPO (2018) EPPO reporting service 2018/154. First report of Spodoptera frugiperda in India. https://gd.eppo.int/reporting/article-6348. Accessed 12 Mar 2021
EPPO (2021) EPPO reporting service 2021/053. First report of Spodoptera frugiperda in the Canary Islands, Spain. https://gd.eppo.int/reporting/article-6992. Accessed 13 Dec 2021
Escribano A, Williams T, Goulson D et al (2000) Parasitoid–pathogen–pest interactions of Chelonus insularis, Campoletis sonorensis, and a nucleopolyhedrovirus in Spodoptera frugiperda larvae. Biol Control 19:265–273. https://doi.org/10.1006/bcon.2000.0865
Article
Google Scholar
EU (2018) Commission decision (EU) 2018/638 of 23 april 2018 establishing emergency measures to prevent the introduction into and the spread within the Union of the harmful organism Spodoptera frugiperda (Smith). OJ L 105:31–34. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018D0638. Accessed 21 Mar 2021
Google Scholar
EU (2019) Commission delegated regulation (EU) 2019/1702 of 1 august 2019 supplementing regulation (EU) 2016/2031 of the European parliament and of the council by establishing the list of priority pests. OJ L 260:8–10. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1702. Accessed 21 Mar 2021
Google Scholar
Fan J, Wu P, Tian T et al (2020) Potential distribution and niche differentiation of Spodoptera frugiperda in Africa. Insects 11:383. https://doi.org/10.3390/insects11060383
Article
PubMed Central
Google Scholar
FAO (2020) The global action for fall armyworm control: action framework 2020–2022—working together to tame the global threat. FAO, Rome, Italy. https://doi.org/10.4060/ca9252en
FAO (2021) Prevention, preparedness and response guidelines for Spodoptera frugiperda. FAO on behalf of the Secretariat of the International Plant Protection Convention. https://doi.org/10.4060/cb5880en
Farias CA, Brewer MJ, Anderson DJ et al (2014) Native maize resistance to corn earworm, Helicoverpa zea, and fall armyworm, Spodoptera frugiperda, with notes on aflatoxin content. Southwest Entomol 39:411–426. https://doi.org/10.3958/059.039.0303
Article
Google Scholar
Garcia AG, Godoy WAC, Thomas JMG et al (2018) Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on corn in the state of Florida. J Econ Entomol 111:120–126. https://doi.org/10.1093/jee/tox329
CAS
Article
PubMed
Google Scholar
Garcia AG, Ferreira CP, Godoy WA, Meagher RL (2019) A computational model to predict the population dynamics of Spodoptera frugiperda. J Pest Sci 92:429–441. https://doi.org/10.1007/s10340-018-1051-4
Article
Google Scholar
Gilioli G, Pasquali S, Parisi S, Winter S (2014) Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. Pest Manag Sci 70:1611–1623. https://doi.org/10.1002/ps.3734
CAS
Article
PubMed
Google Scholar
Gilioli G, Sperandio G, Simonetto A et al (2021) Modelling diapause termination and phenology of the Japanese beetle Popillia japonica. J Pest Sci. https://doi.org/10.1007/s10340-021-01434-8
Article
Google Scholar
Gilioli G, Colli P, Colturato M et al (2021b) A nonlinear model for stage-structured population dynamics with nonlocal density-dependent regulation: an application to the fall armyworm moth. Math Biosci 335:108573. https://doi.org/10.1016/j.mbs.2021.108573
Article
PubMed
Google Scholar
Gilioli G, Sperandio G, Colturato M et al (2021c) Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biol Invasions. https://doi.org/10.1007/s10530-021-02639-9
Article
Google Scholar
Goergen G, Kumar PL, Sankung SB et al (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11:e0165632. https://doi.org/10.1371/journal.pone.0165632
CAS
Article
PubMed
PubMed Central
Google Scholar
Gutierrez AP (1996) Applied population ecology: a supply-demand approach. John Wiley & Sons
Google Scholar
Gutierrez AP, Ponti L (2013) Eradication of invasive species: why the biology matters. Environ Entomol 42:395–411. https://doi.org/10.1603/EN12018
Article
PubMed
Google Scholar
Hardke JT, Lorenz GM, Leonard BR (2015) Fall armyworm (Lepidoptera: Noctuidae) ecology in southeastern cotton. J Integr Pest Manag 6:10–10. https://doi.org/10.1093/jipm/pmv009
Article
Google Scholar
Harrison FP (1984) The development of an economic injury level for low populations of fall armyworm (Lepidoptera: Noctuidae) in grain corn. Fla Entomol 67:335. https://doi.org/10.2307/3494710
Article
Google Scholar
He L, Zhao S, Ali A et al (2021a) Ambient humidity affects development, survival, and reproduction of the invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in China. J Econ Entomol 114:1145–1158. https://doi.org/10.1093/jee/toab056
Article
PubMed
Google Scholar
He H, Zhou A, He L et al (2021b) The frequency of cannibalism by Spodoptera frugiperda larvae determines their probability of surviving food deprivation. J Pest Sci. https://doi.org/10.1007/s10340-021-01371-6
Article
Google Scholar
Hruska AJ, Gould F (1997) Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): impact of larval population level and temporal occurrence on maize yield in Nicaragua. J Econ Entomol 90:611–622. https://doi.org/10.1093/jee/90.2.611
Article
Google Scholar
Huang Y, Dong Y, Huang W et al (2020) Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects 11:805. https://doi.org/10.3390/insects11110805
Article
PubMed Central
Google Scholar
Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578. https://doi.org/10.1007/s10113-013-0499-2
Article
Google Scholar
Johnson SJ (1987) Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int J Trop Insect Sci 8:543–549. https://doi.org/10.1017/S1742758400022591
Article
Google Scholar
Koffi D, Kyerematen R, Eziah VY et al (2020) Assessment of impacts of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on maize production in Ghana. J Integr Pest Manag 11:20. https://doi.org/10.1093/jipm/pmaa015
Article
Google Scholar
Kumela T, Simiyu J, Sisay B et al (2019) Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int J Pest Manag 65:1–9. https://doi.org/10.1080/09670874.2017.1423129
Article
Google Scholar
Lanzarone E, Pasquali S, Gilioli G, Marchesini E (2017) A Bayesian estimation approach for the mortality in a stage-structured demographic model. J Math Biol 75:759–779. https://doi.org/10.1007/s00285-017-1099-4
CAS
Article
PubMed
Google Scholar
Leather SR (2018) Factors affecting fecundity, fertility, oviposition, and larviposition in insects. Insect reproduction. CRC Press, pp 143–174
Chapter
Google Scholar
Liu T, Wang J, Hu X, Feng J (2020) Land-use change drives present and future distributions of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sci Total Environ 706:135872. https://doi.org/10.1016/j.scitotenv.2019.135872
CAS
Article
PubMed
Google Scholar
Luginbill P (1928) The fall army worm. US Department of Agriculture
Meagher RL, Nagoshi RN (2004) Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol Entomol 29:614–620. https://doi.org/10.1111/j.0307-6946.2004.00629.x
Article
Google Scholar
Milano P, Berti Filho E, Parra JR, Consoli FL (2008) Temperature effects on the mating frequency of Anticarsia gemmatalis Hüebner and Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae). Neotrop Entomol 37:528–535. https://doi.org/10.1590/s1519-566x2008000500005
Article
PubMed
Google Scholar
Montezano DG, Specht A, Sosa-Gómez DR et al (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300. https://doi.org/10.4001/003.026.0286
Article
Google Scholar
Muñoz Sabater J (2019) ERA5-Land hourly data from 1981 to present. Copernicus Climate change service (C3S) Climate data store (CDS). https://doi.org/10.24381/cds.e2161bac. Accessed 9 Mar 2021
Murúa G, Virla E (2004) Population parameters of Spodoptera frugiperda (Smith) (Lep.: Noctuidae) fed on corn and two predominant grasess in Tucuman (Argentina). Acta Zool Mex 20:199–210. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372004000100015. Accessed 12 Mar 2021
Google Scholar
Nagoshi RN, Meagher RL (2004) Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ Entomol 33:881–889. https://doi.org/10.1603/0046-225X-33.4.881
Article
Google Scholar
Nagoshi RN, Adamczyk JJ, Meagher RL et al (2007) Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. J Econ Entomol 100:1569–1576. https://doi.org/10.1093/jee/100.5.1569
Article
PubMed
Google Scholar
Nagoshi RN, Meagher RL, Hay-Roe M (2012) Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes: fall armyworm migration. Ecol Evol 2:1458–1467. https://doi.org/10.1002/ece3.268
Article
PubMed
PubMed Central
Google Scholar
Oeh U, Dyker H, Lösel P, Hoffmann KH (2001) In vivo effects of Manduca sexta allatotropin and allatostatin on development and reproduction in the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae). Invertebr Reprod Dev 39:239–247. https://doi.org/10.1080/07924259.2001.9652488
CAS
Article
Google Scholar
Overton K, Maino JL, Day R et al (2021) Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): a review. Crop Prot 145:105641. https://doi.org/10.1016/j.cropro.2021.105641
CAS
Article
Google Scholar
Pair SD, Raulston JR, Sparks AN et al (1986) Fall armyworm distribution and population dynamics in the southeastern states. The Fla Entomol 69:468–487. https://doi.org/10.2307/3495380
Article
Google Scholar
Pashley DP, Hardy TN, Hammond AM (1995) Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann Entomol Soc Am 88:748–755. https://doi.org/10.1093/aesa/88.6.748
Article
Google Scholar
Pasquali S, Mariani L, Calvitti M et al (2020) Development and calibration of a model for the potential establishment and impact of Aedes albopictus in Europe. Acta Trop. https://doi.org/10.1016/j.actatropica.2019.105228
Article
PubMed
Google Scholar
Ponti L, Gilioli G, Biondi A et al (2015) Physiologically based demographic models streamline identification and collection of data in evidence-based pest risk assessment. EPPO Bull 45:317–322. https://doi.org/10.1111/epp.12224
Article
Google Scholar
Rafikov M, Balthazar JM, von Bremen HF (2008) Mathematical modeling and control of population systems: Applications in biological pest control. Appl Math Comput 200:557–573. https://doi.org/10.1016/j.amc.2007.11.036
Article
Google Scholar
Ramasamy M, Das B, Ramesh R (2021) Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J Pest Sci. https://doi.org/10.1007/s10340-021-01411-1
Article
Google Scholar
Ramirez-Cabral NYZ, Kumar L, Shabani F (2017) Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. J Agric Sci 155:1219–1238. https://doi.org/10.1017/S0021859617000314
Article
Google Scholar
Régnière J, St-Amant R, Duval P (2012a) Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biol Invasions 14:1571–1586. https://doi.org/10.1007/s10530-010-9918-1
Article
Google Scholar
Régnière J, Powell J, Bentz B, Nealis V (2012b) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647. https://doi.org/10.1016/j.jinsphys.2012.01.010
CAS
Article
PubMed
Google Scholar
Ríos-Díez JD, Saldamando-Benjumea CI (2011) Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central colombia to two insecticides, methomyl and lambda-cyhalothrin: a study of the genetic basis of resistance. J Econ Entomol 104:1698–1705. https://doi.org/10.1603/EC11079
CAS
Article
PubMed
Google Scholar
Rojas JC, Virgen A, Malo EA (2004) Seasonal and nocturnal flight activity of Spodoptera frugiperda males (Lepidoptera: Noctuidae) monitored by pheromone traps in the coast of Chiapas, Mexico. Fla Entomol 87:496–503. https://doi.org/10.1653/0015-4040(2004)087[0496:SANFAO]2.0.CO;2
Article
Google Scholar
Rose AH, Silversides RH, Lindquist OH (1975) Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid, Spodoptera frugiperda (Lepidoptera: Noctuidae). Can Entomol 107:567–576. https://doi.org/10.4039/Ent107567-6
Article
Google Scholar
Rossi V, Sperandio G, Caffi T et al (2019) Critical success factors for the adoption of decision tools in IPM. Agronomy 9:710. https://doi.org/10.3390/agronomy9110710
Article
Google Scholar
Salas-Araiza MD, Martínez-Jaime OA, Guzmán-Mendoza R et al (2018) Fluctuación poblacional de Spodoptera frugiperda (JE Smith) y Spodoptera exigua (Hubner)(Lepidoptera: Noctuidae) mediante el uso de feromonas en Irapuato, Gto. Mex Entomol Mex 5:368–374
Google Scholar
Salazar-Blanco JD, Cadet-Piedra E, González-Fuentes F (2020) Monitoreo de Spodoptera spp. en caña de azúcar: uso de trampas con feromonas sexuales. Agron Mesoam 31:445–459. https://doi.org/10.15517/am.v31i2.39046
Article
Google Scholar
Sarr OM, Garba M, Bal AB et al (2021) Strain composition and genetic diversity of the fall armyworm Spodoptera frugiperda (Lepidoptera, Noctuidae): new insights from seven countries in West Africa. Int J Trop Insect Sci 41:2695–2711. https://doi.org/10.1007/s42690-021-00450-6
Article
Google Scholar
Sartiami D, Dadang HI et al (2020) First record of fall armyworm (Spodoptera frugiperda) in Indonesia and its occurence in three provinces. IOP Conf Ser Earth Environ Sci 468:012021. https://doi.org/10.1088/1755-1315/468/1/012021
Article
Google Scholar
Schlemmer M (2018) Effect of temperature on development and reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae). Dissertation, North-West University. http://repository.nwu.ac.za/handle/10394/31294. Accessed 16 Mar 2021
Schulzweida U (2019) CDO user guide. 1–206. https://doi.org/10.5281/zenodo.2558193
Sharanabasappa CM, Kalleshwaraswamy J, Poorani MS et al (2019) Natural enemies of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), a recent invasive pest on maize in South India. Fla Entomol. https://doi.org/10.1653/024.102.0335
Article
Google Scholar
Silvain JF, Ti-A-Hing J (1985) Prediction of larval infestation in pasture grasses by Spodoptera frugiperda (Lepidoptera: Noctuidae) from estimates of adult abundance. Fla Entomol 68:686. https://doi.org/10.2307/3494875
Article
Google Scholar
Simmons AM (1993) Effects of Constant and fluctuating temperatures and humidities on the survival of Spodoptera frugiperda pupae (Lepidoptera: Noctuidae). Fla Entomol 76:333. https://doi.org/10.2307/3495733
Article
Google Scholar
Soberon J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106:19644–19650. https://doi.org/10.1073/pnas.0901637106
Article
PubMed
PubMed Central
Google Scholar
Solari HG, Natiello MA (2014) Linear processes in stochastic population dynamics: theory and application to insect development. Sci World J 2014:1–15. https://doi.org/10.1155/2014/873624
Article
Google Scholar
Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82. https://doi.org/10.2307/3494083
Article
Google Scholar
Sperandio G (2021) Models supporting decision-making in pest management. The role of scales and contexts of application. Dissertation, University of Modena and Reggio Emilia
Suby SB, Soujanya PL, Yadava P et al (2020) Invasion of fall armyworm (Spodoptera frugiperda) in India: nature, distribution, management and potential impact. Curr Sci 119(1):44–51. https://doi.org/10.18520/cs/v119/i1/44-51
Article
Google Scholar
Suh S-J, Choi D-S, Na S (2021) Occurrence status of the fall armyworm (Lepidoptera: Noctuidae) in South Korea. Insecta Mundi
Tambo JA, Kansiime MK, Rwomushana I et al (2021) Impact of fall armyworm invasion on household income and food security in Zimbabwe. Food Energy Secur 10:299–312. https://doi.org/10.1002/fes3.281
Article
Google Scholar
Tepa-Yotto GT, Tonnang HEZ, Goergen G et al (2021) Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological control. Insects 12:273. https://doi.org/10.3390/insects12040273
Article
PubMed
PubMed Central
Google Scholar
Timilsena BP, Niassy S, Kimathi E et al (2022) Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci Rep 12:1–15. https://doi.org/10.1038/s41598-021-04369-3
CAS
Article
Google Scholar
Tingle FC, Mitchell ER (1979) Spodoptera frugiperda: factors affecting pheromone trap catches in corn and peanuts. Environ Entomol 8:989–992. https://doi.org/10.1093/ee/8.6.989
Article
Google Scholar
Van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z
Article
Google Scholar
Varella AC, Menezes-Netto AC, de Alonso JD, S, et al (2015) Mortality dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) immatures in maize. PLoS ONE 10:e0130437. https://doi.org/10.1371/journal.pone.0130437
CAS
Article
PubMed
PubMed Central
Google Scholar
Vilarinho EC, Fernandes OA, Hunt TE, Caixeta DF (2011) Movement of Spodoptera frugiperda adults (Lepidoptera: Noctuidae) in maize in Brazil. Fla Entomol 94:480–488. https://doi.org/10.1653/024.094.0312
Article
Google Scholar
Westbrook JK, Nagoshi RN, Meagher RL et al (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267. https://doi.org/10.1007/s00484-015-1022-x
CAS
Article
PubMed
Google Scholar
Wiens JA, Stralberg D, Jongsomjit D et al (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106:19729–19736. https://doi.org/10.1073/pnas.0901639106
Article
PubMed
PubMed Central
Google Scholar
Zacarias DA (2020) Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim Change 161:555–566. https://doi.org/10.1007/s10584-020-02722-5
CAS
Article
Google Scholar
Zaimi S, Saranum M, Hudin L, Ali W (2021) First incidence of the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797) attacking maize in Malaysia. Bioinvasions Rec 10:81–90. https://doi.org/10.3391/bir.2021.10.1.10
Article
Google Scholar
Zanuncio JC, da Silva CAD, de Lima ER et al (2008) Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae). Braz Arch Biol Technol 51:121–125. https://doi.org/10.1590/S1516-89132008000100015
Article
Google Scholar
Zhang Z, Batuxi JY et al (2021) Effects of different wheat tissues on the population parameters of the fall armyworm (Spodoptera frugiperda). Agronomy 11:2044. https://doi.org/10.3390/agronomy11102044
Article
Google Scholar