Important pest species of the Spodoptera complex: Biology, thermal requirements and ecological zoning

Abstract

In South America, especially in Brazil, four members of the Spodoptera complex, Spodoptera albula (Walker, 1857), S. cosmioides (Walker, 1858), S. eridania (Stoll, 1782), and S. frugiperda (J.E. Smith, 1797) are important pests of many crops, in particular corn, soybean and cotton crops. Spodoptera eridania and S. frugiperda have recently invaded Africa and caused serious crop damage, and S. frugiperda has invaded Asia and Oceania. The present study tested the effect of a range of seven temperatures (18–34 °C) on these four Spodoptera species simultaneously, assessing several biological variables. Based on the thermal tolerances obtained experimentally, the ecological zoning of each species in Brazil was mapped and compared spatially, according to the crop calendar of three important crops in different regions (first and second corn harvest, soybean and cotton). Our results showed that S. eridania had the lowest temperature threshold (Tt), i.e., it is favored in regions with more moderate temperatures; and did not tolerate the warmest temperature, failing to complete its development at 34 °C. In contrast, S. albula did not complete its development at 18 °C and may be more successful in warmer regions. In general, S. frugiperda and S. cosmioides were able to develop over a wide range of temperatures, and S. frugiperda showed a higher biological potential at all temperatures evaluated. Our biological data and the computational code are available online. The extensive data produced here can help other entomologists to delimit the spatial distribution of the Spodoptera complex and forecast outbreaks of these pests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

All datasets, R code, are made available as online supplementary materials, and software (algorithm) is available at 10.5281/zenodo.4594884.

References

  1. Adamczyk JJ Jr, Sumerford DV (2000) Increased tolerance of fall armyworms (Lepidoptera: Noctuidae) to Cry1Ac δ-endotoxin when fed transgenic Bacillus thuringiensis cotton: impact on the development of subsequent generations. Fla Entomol 84:1–6. https://doi.org/10.2307/3496656

    Article  Google Scholar 

  2. Almeida LP, Specht A, Teston JA (2013) Fauna of Noctuidae (Lepidoptera: Noctuoidea) in a pasture area in Altamira, Eastern Amazon, Pará, Brazil. Braz J Biol 74:983–990. https://doi.org/10.1590/1519-6984.07713

    Article  Google Scholar 

  3. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  4. Angulo A, Olivares T, Weigert G (2008) Estados inmaduros de lepidópteros nóctuidos de importancia agrícola y forestal en Chile y claves para su identificación (Lepidóptera: Noctuidae), 3rd edn. Universidad de Concepción, Concepción

    Google Scholar 

  5. Arnold CY (1959) The determination and significance of the base temperature in a linear heat unit system. J Am Soc Hortic Sci 74:430–445

    Google Scholar 

  6. Bean JL (1961) Predicting emergence of second-instar spruce budworm larvae from hibernation under field conditions in Minnesota. Ann Entomol Soc Am 54:175–177. https://doi.org/10.1093/aesa/54.2.175

    Article  Google Scholar 

  7. Bernardi O, Sorgatto RJ, Barbosa AD, Domingues FA, Dourado PM, Carvalho RA, Martinelli S, Head GP, Omoto C (2014) Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot 58:33–40. https://doi.org/10.1016/j.cropro.2014.01.001

    CAS  Article  Google Scholar 

  8. Beserra EB, Parra JRP (2005) Impact of the number of Spodoptera frugiperda egg layers on parasitism by Trichogramma atopovirilia. Sci Agr 62:190–193. https://doi.org/10.1590/s0103-90162005000200016

    Article  Google Scholar 

  9. Brasil (2016) Estudos, lista de cultivares indicadas para cada região e a relação de municípios com os respectivos calendários de plantio. Ministério da Agricultura, Pecuária e Abastecimentos. http://www.agricultura.gov.br/assuntos/riscos-seguro/risco-agropecuario/portarias Accessed 25 Jan 2020

  10. Brito R, Specht A, Gonçalves GL, Moreira GRP, Carneiro E, Santos FL, Roque-Specht VF, Mielke OHH, Casagrande MM (2019) Spodoptera marima: a new synonym of Spodoptera ornithogalli (Lepidoptera: Noctuidae), with notes on adult morphology, host plant use and genetic variation along its geographic range. Neotrop Entomol 48:433–448. https://doi.org/10.1007/s13744-018-0654-z

    CAS  Article  PubMed  Google Scholar 

  11. Butt BA, Cantu E (1962) Sex determination of lepidopterous pupae, vol 1. USDA, Washington. https://doi.org/10.1017/CBO9781107415324.004

    Google Scholar 

  12. Cabezas MF, Nava DE, Geissler LO, Melo M, Garcia MS, Krüger R (2013) Development and leaf consumption by Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) reared on leaves of agroenergy crops. Neotrop Entomol 42:588–594. https://doi.org/10.1007/s13744-013-0169-6

    CAS  Article  PubMed  Google Scholar 

  13. Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of someaphids and their parasites. J Appl Ecol 11:431–438. https://doi.org/10.2307/2402197

    Article  Google Scholar 

  14. Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 8:e62268. https://doi.org/10.1371/journal.pone.0062268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Cruz I (1995) A lagarta-do-cartucho na cultura do milho. Embrapa Milho e Sorgo, Sete Lagoas, MG

    Google Scholar 

  16. Cruz I, Figueiredo MLC, Oliveira AC, Vasconcelos CA (1999) Damage of Spodoptera frugiperda (Smith) in different maize genotypes cultivated in soil under three levels of aluminium saturation. Int J Pest Manag 45:293–296. https://doi.org/10.1080/096708799227707

    Article  Google Scholar 

  17. da Silva DM, Bueno AF, Stecca CS, Andrade K, Neves PMOJ, de Oliveira MCN (2017) Biology of Spodoptera eridania and Spodoptera cosmioides(Lepidoptera: Noctuidae) on different host plants. Fla Entomol 100:752–760. https://doi.org/10.1653/024.100.0423

    Article  Google Scholar 

  18. da Silva IA, Oliveira GM, Lacerda LB, Batista JL, Lopes GN (2019) Perspectivas atuais da utilização de bioinseticidas em Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev Bras Meio Ambiente 27:20–27. https://doi.org/10.5281/zenodo.3575253

    Article  Google Scholar 

  19. EPPO (2019) EPPO A1 List of pests recommended for regulation as quarantine pests. European and Mediterranean Plant Protection Organization—EPPO https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list Accessed 15 June 2020

  20. EPPO (2020) Spodoptera frugiperda detected in Northern Territory, Australia. European and Mediterranean Plant Protection Organization—EPPO https://gd.eppo.int/reporting/article-6749 Accessed 16 July 2020

  21. ESRI (2018) ArcGIS desktop: version 10.3. Environmental Systems Research Institute, Redlands, CA

  22. Fatoretto JC, Michel AP, Silva Filho MCS, Silva N (2017) Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J Integr Pest Manag 8:1–10. https://doi.org/10.1093/jipm/pmx011

    Article  Google Scholar 

  23. Favetti BM, Butnariu AR, Foerster LA (2015) Biology and reproductive capacity of Spodoptera eridania (Cramer) (Lepidoptera, Noctuidae) in different soybean cultivars. Rev Bras Entomol 59:89–95. https://doi.org/10.1016/j.rbe.2015.03.002

    Article  Google Scholar 

  24. Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K (2018) Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka. India Curr Sci 115:621–623

    CAS  Article  Google Scholar 

  25. Garcia AG, Godoy WAC, Thomas JMG, Nagoshi RN, Meagher RL (2018) Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on corn in the State of Florida. J Econ Entomol 111:120–126. https://doi.org/10.1093/jee/tox329

    CAS  Article  PubMed  Google Scholar 

  26. Garcia AG, Ferreira CP, Godoy WAC, Meagher RL (2019) A computational model to predict the population dynamics of Spodoptera frugiperda. J Pest Sci 92:429–441. https://doi.org/10.1007/s10340-018-1051-4

    Article  Google Scholar 

  27. Gazzoni DL, Yorinori JT (1995) Manual de identificação de pragas e doenças da soja. EMBRAPA, Brasília, DF

    Google Scholar 

  28. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e0165632. https://doi.org/10.1371/journal.pone.0165632

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:487–488. https://doi.org/10.1093/jee/69.4.487

    Article  Google Scholar 

  30. Haddad ML, Parra JRP, Moraes RCB (1999) Métodos para estimar os limites térmicos inferior e superior de desenvolvimento de insetos. FEALQ, Piracicaba, SP

    Google Scholar 

  31. Honék A (1996) Geographical variation in thermal requirements for insect development. Eur J Entomol 93:303–312

    Google Scholar 

  32. Kergoat GJ, Prowell DP, Le Ru BP, Mitchell A, Dumas P, Clamens AL, Condaminef FL, Silvain JF (2012) Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol Phylogenet Evol 65:855–870. https://doi.org/10.1016/j.ympev.2012.08.006

    Article  PubMed  Google Scholar 

  33. Knipling EF (1980) Regional management of the fall armyworm—a realistic approach? Fla Entomol 63:468–480. https://doi.org/10.2307/3494531

    Article  Google Scholar 

  34. Lacerda LF, Coelho A Jr, Garcia AG, Sentelhas PC, Parra JRP (2019) Biology at different temperatures, thermal requirements, and ecological zoning of Opogona sacchari (Lepidoptera: Tineidae). J Econ Entomol 112:1676–1682. https://doi.org/10.1093/jee/toz103

    Article  Google Scholar 

  35. Leppla NC (2009) The basics of quality control of insect rearing. In: Schneider JC (ed) Principles and procedures for rearing high quality insects. Mississippi State University, Starkville, MI, pp 289–304

    Google Scholar 

  36. Luginbill P (1928) The fall army worm. USDA Tech Bull. https://doi.org/10.22004/ag.econ.156281

    Article  Google Scholar 

  37. Malaquias JB, Caprio MA, Godoy WAC, Omoto C, Ramalho FS, Pachú JKS (2020) Experimental and theoretical landscape influences on Spodoptera frugiperda movement and resistance evolution in contaminated refuge areas of Bt cotton. J Pest Sci 93:329–340. https://doi.org/10.1007/s10340-019-01145-1

    Article  Google Scholar 

  38. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  39. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Barros NM (2013) a) Biotic potential and reproductive parameters of Spodoptera eridania (Stoll) (Lepidoptera, Noctuidae) in the laboratory. Rev Bras Entomol 57:340–346. https://doi.org/10.1590/S0085-56262013005000026

    Article  Google Scholar 

  40. Montezano DG, Specht A, Bortolin TM, Fronza E, Sosa-Gómez DR, Roque-Specht VF, Pezzi P, Luz PC, Barros NM (2013) b) Immature stages of Spodoptera albula (Walker) (Lepidoptera: Noctuidae): developmental parameters and host plants. Acad Bras Ciênc 85:271–284. https://doi.org/10.1590/s0001-37652013000100013

    Article  Google Scholar 

  41. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, De Barros NM (2014) a) Immature stages of Spodoptera eridania (Lepidoptera: Noctuidae): developmental parameters and host plants. J Insect Sci 14:238. https://doi.org/10.1093/jisesa/ieu100

    Article  PubMed  PubMed Central  Google Scholar 

  42. Montezano DG, Specht A, Sosa-Gómez DR et al (2014) b) Biotic potential, fertility and life table of Spodoptera albula (Walker) (Lepidoptera: Noctuidae), under controlled conditions. An Acad Bras Ciênc 86:723–732. https://doi.org/10.1590/0001-3765201402812

    Article  PubMed  Google Scholar 

  43. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Malaquias JV, Paula-Moraes SV, Peterson JA, Hunt TE (2019) Biotic potential and reproductive parameters of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae). J Agr Sci 11:240–252. https://doi.org/10.5539/jas.v11n13p240

    Article  Google Scholar 

  44. Moral RA, Hinde J, Demétrio CGB (2017) Half-normal plots and overdispersed models in R: the hnp package. J Stat Softw 81:1–23. https://doi.org/10.18637/jss.v081.i10

    Article  Google Scholar 

  45. Nagoshi RN (2009) Can the amount of corn acreage predict fall armyworm (Lepidoptera: Noctuidae) infestation levels in nearby cotton? J Econ Entomol 102:210–218. https://doi.org/10.1603/029.102.0130

    Article  PubMed  Google Scholar 

  46. Norris RF, Caswell-Chen EP, Kogan M (2003) Concepts in integrated pest management. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  47. Parra JRP, Omoto C (2004) Cada vez mais terríveis. Cultivar 6:18–20

    Google Scholar 

  48. Parra JRP, Precetti AACM, Kasten P Jr (1977) Aspectos biológicos de Spodoptera eridania (Cramer, 1782) (Lepidoptera: Noctuidae) em soja e algodoeiro. An Soc Entomol Bras 6:147–155

    Google Scholar 

  49. Pogue M (2002) A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). Mem Am Entomol Soc 43:1–202

    Google Scholar 

  50. R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.Rproject.org/

  51. Sharanabasappa D, Kalleshwaraswamy CM, Asokan R, Swamy HMM, Maruthi MS, Pavithra HB, Hegde K, Navi S, Prabhu ST, Goergen G (2018) First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Hort Ecosyst 24:23–29

    Google Scholar 

  52. Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–87. https://doi.org/10.2307/3494083

    Article  Google Scholar 

  53. Specht A, Roque-Specht VF (2016) Immature stages of Spodoptera cosmioides (Lepidoptera: Noctuidae): developmental parameters and host plants. Zoologia 33:e20160053. https://doi.org/10.1590/S1984-4689zool-20160053

    Article  Google Scholar 

  54. Specht A, Roque-Specht VF (2018) Biotic potential and reproductive parameters of Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) in the laboratory. Braz J Biol 79:488–494. https://doi.org/10.1590/1519-6984.184595

    Article  PubMed  Google Scholar 

  55. Teodoro AV, Procopio SO, Bueno AF, Negrisoli Jr. AS, Carvalho HWL, Negrisoli CRCB, Brito LF, Guzzo EC (2013) Spodoptera cosmioides (Walker) e Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae): novas pragas de cultivos da região nordeste. Circular Técnica 131. EMBRAPA, Brasília, DF

  56. Trudgill DL, Honèk A, Li D, Van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14. https://doi.org/10.1111/j.1744-7348.2005.04088.x

    Article  Google Scholar 

  57. Vickery RA (1929) Studies on the fall army worm in the Gulf coast district of Texas. USDA Tech Bull 138:10–64

    Google Scholar 

  58. Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S (2015) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267. https://doi.org/10.1007/s00484-015-1022-x

    Article  PubMed  Google Scholar 

  59. Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environ Entomol 21:689–699. https://doi.org/10.1093/ee/21.4.689

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Neide Graciano Maria from USP/ESALQ for helping with rearing the Spodoptera species. We are grateful to the companies PROMIP and Biopartner for supplying us with the different species of Spodoptera. We also thank Janet Reid, JWR Associates, for revising and improving the English version of this article. AGG holds a fellowship awarded by FAPESP (19/26071-8).

Funding

São Paulo Research Foundation (FAPESP) (Process 2018/02317–5) as part of the São Paulo Advanced Research Center for Biological Control (SPARCBIO) hosted at the Luiz de Queiroz College of Agriculture (ESALQ) of the University of São Paulo (USP), sponsored by FAPESP, Koppert and USP. National Institute of Science and Technology Semiochemicals in Agriculture (INCT) (FAPESP 2014/50871–0/CNPq 465511/2014–7). Center for Agriculture and Bioscience International (CABI) project IC10001B—Invasive Best Practice Solutions (DGIS). CABI gratefully acknowledges the core financial support from CABI member countries (and lead agencies). See at https://www.cabi.org/about-cabi/who-we-work-with/key-donors/for full details.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aloisio Coelho Jr.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Antonio Biondi .

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parra, J.R.P., Coelho, A., Cuervo-Rugno, J.B. et al. Important pest species of the Spodoptera complex: Biology, thermal requirements and ecological zoning. J Pest Sci (2021). https://doi.org/10.1007/s10340-021-01365-4

Download citation

Keywords

  • Invasive pest
  • Spatial modeling
  • Fall armyworm
  • Integrated pest management