Skip to main content

Advertisement

Log in

Fluopimomide effectively controls Meloidogyne incognita and shows a growth promotion effect in cucumber

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The southern root-knot nematode (Meloidogyne incognita) is one of the most devastating threats to cucumber production in China. The ban of methyl bromide and restricted use of other fumigants and high-toxicity of non-fumigant nematicides increases the need for more selective non-fumigant nematicides that pose fewer risks to the environment to manage M. incognita. Fluopimomide is a new fungicide with a similar chemical structure to fluopyram, a fungicide possessing nematicidal activity. However, the efficacy of fluopimomide against M. incognita and its effects on cucumber yield have not been evaluated. In this study, we examined the nematicidal effect of fluopimomide on M. incognita under laboratory and field conditions. In the laboratory, fluopimomide was highly toxic to second-stage juveniles (J2s) and eggs of M. incognita with a median lethal concentration (LC50) of 8.1 and 11.6 mg L−1, respectively, after 24 h exposure. In field trials, fluopimomide applied at 250, 500 and 750 g ha−1 was effective in reducing population densities of M. incognita J2s and root galling caused by the nematode, meanwhile, enhancing plant height in two consecutive years (2017–2018). Furthermore, fluopimomide at 750 g ha−1 significantly increased fruit yield of cucumber compared to abamectin and fosthiazate, the most widely used non-fumigant nematicides to manage M. incognita in China. Overall, soil application of fluopimomide was effective in management of M. incognita in cucumber production, while enhancing cucumber fruit yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abawi G, Widmer T (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47

    Google Scholar 

  • Back M, Haydock P, Jenkinson P (2002) Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol 51:683–697

    Google Scholar 

  • Barker KR, Townshend JL, Bird GW, Thomason IJ, Dickson DW (1986) Determining nematode population responses to control agents. In: Hickey KD (ed) Methods for evaluating pesticides for control of plant pathogens. APS Press, St. Paul, pp 283–296

    Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Google Scholar 

  • Dahlin P, Eder R, Consoli E, Krauss J, Kiewnick S (2019) Integrated control of Meloidogyne incognita in tomatoes using fluopyram and Purpureocillium lilacinum strain 251. Crop Prot 124:104874

    CAS  Google Scholar 

  • Devran Z, Söğüt MA (2009) Distribution and identification of root-knot nematodes from Turkey. J Nematol 41:128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duniway J (2002) Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337–1343

    CAS  PubMed  Google Scholar 

  • Duval H, Van Ghelder C, Portier U, Confolent C, Meza P, Esmenjaud D (2019) New data completing the spectrum of the Ma, RMia, and RMja genes for resistance to root-knot nematodes (Meloidogyne spp.) in Prunus. Phytopathology 109:615–622

    CAS  PubMed  Google Scholar 

  • Expósito A, García S, Giné A, Escudero N, Sorribas FJ (2019) Cucumis metuliferus reduces Meloidogyne incognita virulence against the Mi1.2 resistance gene in a tomato-melon rotation sequence. Pest Manag Sci 75:1902–1910

    PubMed  Google Scholar 

  • Faske TR, Hurd K (2015) Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram. J Nematol 47:316

    CAS  PubMed  PubMed Central  Google Scholar 

  • France RA, Abawi GS (1994) Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. phaseoli on selected bean genotypes. J Nematol 26:467–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajihassani A, Davis RF, Timper P (2019) Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Dis. https://doi.org/10.1094/PDIS-04-19-0836-RE

    Article  PubMed  Google Scholar 

  • Haydock PP, Ambrose EL, Wilcox A, Deliopoulos T (2012) Degradation of the nematicide oxamyl under field and laboratory conditions. Nematology 14:339–352

    CAS  Google Scholar 

  • Huang W, Wu Q, Peng H, Kong L, Liu S, Yin H, Cui R, Zhan L, Cui J, Peng D (2016) Mutations in Acetylcholinesterase2 (ace2) increase the insensitivity of acetylcholinesterase to fosthiazate in the root-knot nematode Meloidogyne incognita. Sci Rep 6:38102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Wang Q, Guo M, Fang W, Wang X, Wang Q, Yan D, Ouyang C, Li Y, Cao A (2019) The synergistic advantage of combining chloropicrin or dazomet with fosthiazate nematicide to control root-knot nematode in cucumber production. J Integr Agric 18:2093–2106

    CAS  Google Scholar 

  • Hussey R (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  • ICAMA (2019) Electronic manual of insecticides. http://www.icama.org.cn/hysj/index.jhtml. Accessed 26 Oct 2019

  • Jardim IN, Oliveira DF, Silva GH, Campos VP, de Souza PE (2018) (E)-cinnamaldehyde from the essential oil of Cinnamomum cassia controls Meloidogyne incognita in soybean plants. J Pest Sci 91:479–487

    Google Scholar 

  • Jatala P (1986) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Ji X, Li J, Dong B, Zhang H, Zhang S, Qiao K (2019a) Evaluation of fluopyram for southern root-knot nematode management in tomato production in China. Crop Prot 122:84–89

    CAS  Google Scholar 

  • Ji X, Li J, Meng Z, Zhang S, Dong B, Qiao K (2019b) Synergistic effect of combined application of a new fungicide fluopimomide with a biocontrol agent Bacillus methylotrophicus TA-1 for management of gray mold in tomato. Plant Dis 103:1991–1997

    PubMed  Google Scholar 

  • Jones RK (2017) Nematode control and nematicides: Developments since 1982 and future trends. In: Fourie H, Spaull VW, Jones RK, Daneel MS, De Waele D (eds) Nematology in South Africa: a view from the 21st century. Springer, Cham, pp 129–150

    Google Scholar 

  • Jones JG, Kleczewski NM, Desaeger J, Meyer SL, Johnson GC (2017) Evaluation of nematicides for southern root-knot nematode management in lima bean. Crop Prot 96:151–157

    CAS  Google Scholar 

  • Kayani MZ, Mukhtar T, Hussain MA (2017) Effects of southern root knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Prot 92:207–212

    Google Scholar 

  • Keinath AP, Kousik CS (2011) Sensitivity of isolates of Phytophthora capsici from the eastern United States to fluopicolide. Plant Dis 95:1414–1419

    CAS  PubMed  Google Scholar 

  • Kepenekci I, Hazir S, Lewis EE (2016) Evaluation of entomopathogenic nematodes and the supernatants of the in vitro culture medium of their mutualistic bacteria for the control of the root-knot nematodes Meloidogyne incognita and M. arenaria. Pest Manag Sci 72:327–334

    CAS  PubMed  Google Scholar 

  • Laquale S, Avato P, Argentieri MP, Bellardi MG, D’Addabbo T (2018) Nematotoxic activity of essential oils from Monarda species. J Pest Sci 91:1115–1125

    Google Scholar 

  • Liu B, Ren J, Zhang Y, An J, Chen M, Chen H, Xu C, Ren H (2015) A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agron Sustain Dev 35:251–259

    Google Scholar 

  • McCarter JP (2008) Nematology: terra incognita no more. Nat Biotechnol 26:882

    CAS  PubMed  Google Scholar 

  • Meher HC, Gajbhiye VT, Chawla G, Singh G (2009) Virulence development and genetic polymorphism in Meloidogyne incognita (Kofoid & White) Chitwood after prolonged exposure to sublethal concentrations of nematicides and continuous growing of resistant tomato cultivars. Pest Manag Sci 65:1201–1207

    CAS  PubMed  Google Scholar 

  • MOA (2008) Industrial Standards of the Ministry of Agriculture of the People’s Republic of China (2008) Grades and specifications of cucumber. NY/T 1587-2008

  • MOA (2017) Ministry of Agriculture of the People’s Republic of China. http://www.moa.gov.cn/gk/jcyj/201701/t20170122_5461548.htm. Accessed 22 Jan 2017

  • Norshie PM, Grove IG, Back MA (2017) Persistence of the nematicide fluensulfone in potato (Solanum tuberosum ssp. tuberosum) beds under field conditions. Nematology 19:739–747

    CAS  Google Scholar 

  • Ntalli N, Monokrousos N, Rumbos C, Kontea D, Zioga D, Argyropoulou M, Menkissoglu-Spiroudi U, Tsiropoulos N (2018) Greenhouse biofumigation with Melia azedarach controls Meloidogyne spp. and enhances soil biological activity. J Pest Sci 91:29–40

    Google Scholar 

  • Oka Y, Saroya Y (2019) Effect of fluensulfone and fluopyram on the mobility and infection of second-stage juveniles of Meloidogyne incognita and M. javanica. Pest Manag Sci 75:2095–2106

    CAS  PubMed  Google Scholar 

  • Postnikova OA, Hult M, Shao J, Skantar A, Nemchinov LG (2015) Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS ONE 10:e0118269

    PubMed  PubMed Central  Google Scholar 

  • Qiao K, Liu X, Wang H, Xia X, Ji X, Wang K (2012) Effect of abamectin on root-knot nematodes and tomato yield. Pest Manag Sci 68:853–857

    CAS  PubMed  Google Scholar 

  • Qiao K, Wang Z, Wei M, Wang H, Wang Y, Wang K (2015) Evaluation of chemical alternatives to methyl bromide in tomato crops in China. Crop Prot 67:223–227

    CAS  Google Scholar 

  • Sánchez-Moreno S, Jiménez L, Alonso-Prados J, García-Baudín J (2010) Nematodes as indicators of fumigant effects on soil food webs in strawberry crops in Southern Spain. Ecol Indic 10:148–156

    Google Scholar 

  • Schneider-Orelli O (1947) Entomologisches praktikum. HR Sauerlander, Aarau

    Google Scholar 

  • Simon ACM, Lopez-Nicora HD, Niblack TL, Dayton EA, Tomashefski D, Paul PA (2018) Cropping practices and soil properties associated with plant-parasitic nematodes in corn fields in Ohio. Plant Dis 102:2519–2530

    Google Scholar 

  • Watson TT, Desaeger JA (2019) Evaluation of non-fumigant chemical and biological nematicides for strawberry production in Florida. Crop Prot 117:100–107

    CAS  Google Scholar 

  • Wram C, Zasada IA (2019) Short-term effects of sub-lethal doses of nematicides on Meloidogyne incognita. Phytopathology. https://doi.org/10.1094/PHYTO-11-18-0420-R

    Article  PubMed  Google Scholar 

  • Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, Noling JW (2010) Managing nematodes without methyl bromide. Annu Rev Phytopathol 48:311–328

    CAS  PubMed  Google Scholar 

  • Zhang L, Gao L, Zhang L, Wang S, Sui X, Zhang Z (2012) Alternate furrow irrigation and nitrogen level effects on migration of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse. Sci Hortic 138:43–49

    CAS  Google Scholar 

  • Zhang H, Zhai M, Wang K, Xu H, Tang J, Wang H (2013a) Study on fungicidal activity and mode of action of a novel fungicidal agent, LH-2010A against Rhoizoctonia solani. Chin J Pestic Sci 15:405–411

    CAS  Google Scholar 

  • Zhang R, Xu H, Tang J, Wang H, Wang K (2013b) The evaluation of toxicity and field efficacy of a new fungicide LH-2010A against cucumber downy mildew. Agrochemicals 52:596–598

    CAS  Google Scholar 

  • Zhang R, Wang H, Xu H, Wang J, Wang K (2014) Uptake and transportation behavior of a new fungicidal agent LH-2010A in cucumber plants. J Pestic Sci 39:43–47

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31601661), R&D Project of Shandong Province (2018GSF121005), Natural Science Foundation of Shandong Province (ZR2018PC018), Major Science and Technology Innovation Project of Shandong Province (2019JZZY020608) and Pre-research Project of Jinan Academy of Agricultural Sciences (yy201807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by C. Cutler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Li, J., Meng, Z. et al. Fluopimomide effectively controls Meloidogyne incognita and shows a growth promotion effect in cucumber. J Pest Sci 93, 1421–1430 (2020). https://doi.org/10.1007/s10340-020-01247-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01247-1

Keywords

Navigation