Skip to main content

Advertisement

Log in

Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus maculatus

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Control of the bean weevil, Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae), in stored cowpea beans, Vigna unguiculata (L) Walp., when accomplished, is mainly achieved by applications of phosphine. However, the long-term use of this insect control practice has contributed to the selection of resistant populations, enhancing the need to develop alternative control tools. Due to their diverse biologically active compounds, the essential oils of aromatic plants such as parsley, Petroselinum sativum L., have been suggested as suitable alternatives for controlling insect pests. Here, we evaluated the toxicity (including the metabolic mechanisms underlying the insecticidal activity) of parsley essential oil against C. maculatus. Parsley essential oil controlled C. maculatus in a concentration-dependent manner (concentration increases resulted in lower weight losses and better germination levels of beans) with a fumigant toxicity (LC50: 489.5 μL L−1 air) significantly lower than that observed for phosphine (LC50: 35.7 μL L−1 air). However, when applied at their LC10 values (Parsley essential oil: 399.3 μL L−1 air. Phosphine: 18.6 μL L−1 air), the parsley essential oil caused significantly higher reductions in the emergence of C. maculatus compared with phosphine. Additionally, application of the synergists piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl maleate (DEM) demonstrated that glutathione S-transferases enhanced the parsley essential oil toxicity, while cytochrome P450-dependent monooxygenases formed part of the resistance mechanisms used by C. maculatus to mitigate the toxicity of the essential oil. Our findings suggest that parsley essential oil may be integrated into the control of C. maculatus only when synergized with PBO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Ajayi O, Appel AG, Fadamiro HY (2014) Fumigation toxicity of essential oil monoterpenes to Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). J Insects 2014:1–7. doi:10.1155/2014/917212

    Article  Google Scholar 

  • Athanassiou CG, Rani PU, Kavallieratos NG (2014) The use of plant extracts for stored product protection. In: Singh D (ed) Advances in plant biopesticides. Springer, New Delhi, pp 131–147

    Chapter  Google Scholar 

  • Bett PK, Deng AL, Ogendo JO, Kariuki ST, Kamatenesi-Mugisha M, Mihale JM et al (2016) Chemical composition of Cupressus lusitanica and Eucalyptus saligna leaf essential oils and bioactivity against major insect pests of stored food grains. Ind Crops Prod 82:51–62. doi:10.1016/j.indcrop.2015.12.009

    Article  CAS  Google Scholar 

  • Bortolucci WC, Gonçalves JE, Camilotti J, Ferarrese L, Takemura OS, Junior RP et al (2015) Essential oil of parsley and fractions to in vitro control of cattle ticks and dengue mosquitoes. J Med Plants Res 9:1021–1030. doi:10.5897/JMPR2015.5941

    Article  Google Scholar 

  • Brari J, Thakur DR (2015) Insecticidal efficacy of essential oil from Cinnamomum zeylanicum Blume and its two major constituents against Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). J Agr Sci Tech 11:1323–1336

    CAS  Google Scholar 

  • Brattsten LB, Evans CK, Bonetti S, Zalkow LH (1984) Induction by carrot allelochemicals of insecticide-metabolising enzymes in the southern armyworm (Spodoptera eridania). Comp Biochem Physiol C: Comp Pharmacol 77:29–37. doi:10.1016/0742-8413(84)90126-9

    Article  CAS  Google Scholar 

  • Chaudhry MQ (2000) Phosphine resistance. Pestic. Outlook 11:88–91. doi:10.1039/B006348G

    CAS  Google Scholar 

  • Choi W-S, Park B-S, Lee Y-H, Yoon HY, Lee S-E (2006) Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Prot 25:398–401. doi:10.1016/j.cropro.2005.05.009

    Article  CAS  Google Scholar 

  • Dai L, Ma J, Ma M, Zhang H, Shi Q, Zhang R et al (2016) Characterisation of GST genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defence. Pest Manag Sci 72:816–827. doi:10.1002/ps.4059

    Article  CAS  PubMed  Google Scholar 

  • Ebadollahi A (2013) Plant essential oils from Apiaceae family as alternatives to conventional Insecticides. Ecol Balk 5:149–172

    Google Scholar 

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Comp Pharmacol 130:325–337. doi:10.1016/S1532-0456(01)00255-1

    CAS  Google Scholar 

  • FAO (1975) Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides. 16: tentative method for adults of some stored cereals, with methyl bromide and phosphine. FAO Plant Protection Bulletin 23:12–25

  • Germinara GS, De Cristofaro A, Rotundo G (2015) Repellents effectively disrupt the olfactory orientation of Sitophilus granarius to wheat kernels. J Pest Sci 88:675–684. doi:10.1007/s10340-015-0674-y

    Article  Google Scholar 

  • Gonzales Correa YDC, Faroni LRA, Haddi K, Oliveira EE, Pereira EJG (2015) Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais. Pest Biochem Physiol 125:31–37. doi:10.1016/j.pestbp.2015.06.005

    Article  Google Scholar 

  • Haddi K, Mendonça LP, Dos Santos MF, Guedes RNC, Oliveira EE (2015a) Metabolic and behavioral mechanisms of indoxacarb resistance in Sitophilus zeamais (Coleoptera: Curculionidae). J Econ Entomol 108:362–369. doi:10.1093/jee/tou049

    Article  PubMed  Google Scholar 

  • Haddi K, Oliveira EE, Faroni LRA, Guedes DC, Miranda NNS (2015b) Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae). J Econ Entomol 108:2815–2822. doi:10.1093/jee/tov255

    Article  PubMed  Google Scholar 

  • Hamdi SH, Hedjal-Chebheb M, Kellouche A, Khouja ML, Boudabous A, Jemâa JMB (2015) Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Ind Crops Prod 74:551–556. doi:10.1016/j.indcrop.2015.05.072

    Article  CAS  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the Tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 49:715–720. doi:10.1021/jf000749t

    Article  CAS  PubMed  Google Scholar 

  • Ilboudo Z, Dabiré LCB, Nébié RCH, Dicko IO, Dugravot S, Cortesero AM et al (2010) Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 46:124–128. doi:10.1016/j.jspr.2009.12.002

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 50:45–66. doi:10.1146/annurev.ento.51.110104.151146

    Article  Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145. doi:10.1016/j.tplants.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  • Ketoh GK, Koumaglo HK, Glitho IA (2005) Inhibition of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) development with essential oil extracted from Cymbopogon schoenanthus L. Spreng. (Poaceae), and the wasp Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae). J Stored Prod Res 41:363–371. doi:10.1016/j.jspr.2004.02.002

    Article  Google Scholar 

  • Kirado MM, Srivastava M (2010) A comparative study on the efficacy of two lamiaceae plants on egg—laying performance by the pulse beetle Callosobruchus chinensis Linn. (Coleoptera:Bruchidae). J Biopest 3:590–595

    Google Scholar 

  • Kurowska A, Gałązka I (2006) Essential oil composition of the parsley seed of cultivars marketed in Poland. Flavour Frag J 21:143–147. doi:10.1002/ffj.1548

    Article  CAS  Google Scholar 

  • Lima MPL, Oliveira JV, Barros R, Torres JB (2001) Identification of cowpea Vigna unguiculata (L.) Walp. genotypes resistant to Callosobruchus maculatus (Fabr.)(Coleoptera: Bruchidae). Neotrop Entomol 30:289–295. doi:10.1590/S1519-566X2001000200013

    Article  Google Scholar 

  • Mansour SA, Aly AR (2015) Insecticidal activity of plant oils, bacterial endotoxins and their combinations against Musca domestica L. J Biol Act Prod Nat 5:192–213. doi:10.1080/22311866.2015.1015609

    Google Scholar 

  • Mansour SA, El-Sharkawy AZ, Abdel-Hamid NA (2015) Toxicity of essential plant oils, in comparison with conventional insecticides, against the desert locust, Schistocerca gregaria (Forskål). Ind Crops Prod 63:92–99. doi:10.1016/j.indcrop.2014.10.038

    Article  CAS  Google Scholar 

  • MAPA (2009) Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento/Secretaria de Defesa Agropecuária (MAPA/ACS), Brasília

    Google Scholar 

  • Melo BA, Molina-Rugama AJ, Haddi K, Leite DT, Oliveira EE (2015) Repellency and bioactivity of Caatinga biome plant powders against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Fla Entomol 98:417–423. doi:10.1653/024.098.0204

    Article  Google Scholar 

  • Mitchell R (1975) Evolution of oviposition tactics in bean weevil, Callosobruchus-maculatus (F). Ecology 56:696–702. doi:10.2307/1935504

    Article  Google Scholar 

  • Mkenda PA, Stevenson PC, Ndakidemi P, Farman DI, Belmain SR (2015) Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea (Vigna unguiculata). Int J Trop Insect Sci 35:172–184. doi:10.1017/S174275841500017X

    Article  Google Scholar 

  • Mundina M, Vila R, Tomi F, Tomàs X, Cicció JF, Adzet T et al (2001) Composition and chemical polymorphism of the essential oils from Piper lanceaefolium. Biochem Syst Ecol 29:739–748. doi:10.1016/S0305-1978(00)00103-4

    Article  CAS  PubMed  Google Scholar 

  • Negahban M, Moharramipour S, Sefidkon F (2007) Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J Stored Prod Res 43:123–128. doi:10.1016/j.jspr.2006.02.002

    Article  CAS  Google Scholar 

  • Nenaah GE, Ibrahim SI, Al-Assiuty BA (2015) Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J Stored Prod Res 61:9–16. doi:10.1016/j.jspr.2014.12.007

    Article  Google Scholar 

  • Oliveira ACAX, Ribeiro-Pinto LF, Paumgartten FJR (1997) In vitro inhibition of CYP2B1 monooxygenase by β-myrcene and other monoterpenoid compounds. Toxicol Lett 92:39–46. doi:10.1016/S0378-4274(97)00034-9

    Article  Google Scholar 

  • Oppert B, Guedes RNC, Aikins MJ, Perkin L, Chen Z, Phillips TW et al (2015) Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum. BMC Genom 16:968. doi:10.1186/s12864-015-2121-0

    Article  Google Scholar 

  • Papachristos DP, Stamopoulos DC (2003) Selection of Acanthoscelides obtectus (Say) for resistance to lavender essential oil vapour. J Stored Prod Res 39:433–441. doi:10.1016/S0022-474X(02)00036-X

    Article  CAS  Google Scholar 

  • Peixoto MG, Bacci L, Blank AF, Araújo APA, Alves PB, Silva JHS et al (2015) Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Ind Crops Prod 71:31–36. doi:10.1016/j.indcrop.2015.03.084

    Article  CAS  Google Scholar 

  • Petropoulos SA, Daferera D, Polissiou MG, Passam HC (2010) Effect of freezing, drying and the duration of storage on the composition of essential oils of plain-leafed parsley [Petroselinum crispum (Mill.) Nym. ssp. neapolitanum Danert] and turnip-rooted parsley [Petroselinum crispum (Mill.) Nym. ssp. tuberosum (Bernh.) Crov.]. Flavour Frag J 25:28–34. doi:10.1002/ffj.1954

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: Low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424. doi:10.1146/annurev-ento-120710-100554

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro BM, Guedes RNC, Oliveira EE, Santos JP (2003) Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae). J Stored Prod Res 39:21–31. doi:10.1016/S0022-474X(02)00014-0

    Article  CAS  Google Scholar 

  • Rossi YE, Palacios SM (2013) Fumigant toxicity of Citrus sinensis essential oil on Musca domestica L. adults in the absence and presence of a P450 inhibitor. Acta Trop 127:33–37. doi:10.1016/j.actatropica.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  • Ryan M, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholine-esterase. J Chem Ecol 14:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2002) SAS/STAT User’s Guide.SAS, Cary, NC, USA

  • Sharifian I, Hashemi SM, Darvishzadeh A (2013) Fumigant toxicity of essential oil of Mugwort (Artemisia vulgaris L.) against three major stored product beetles. Arch Phytopathol Plant Protect 46:445–450. doi:10.1080/03235408.2012.743389

    Article  CAS  Google Scholar 

  • Simon JE, Quinn J (1988) Characterization of essential oil of parsley. J Agric Food Chem 36:467–472. doi:10.1021/jf00081a015

    Article  CAS  Google Scholar 

  • Snoussi M, Dehmani A, Noumi E, Flamini G, Papetti A (2016) Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microb Pathog 90:13–21. doi:10.1016/j.micpath.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  • Song HY, Yang JY, Suh JW, Lee HS (2011) Acaricidal activities of apiol and its derivatives from Petroselinum sativum seeds against Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Tyrophagus putrescentiae. J Agric Food Chem 59:7759–7764. doi:10.1021/jf201945y

    Article  CAS  PubMed  Google Scholar 

  • Soujanya PL, Sekhar JC, Kumar P, Sunil N, Prasad CV, Mallavadhani U (2016) Potentiality of botanical agents for the management of post harvest insects of maize: a review. J Food Sci Tech. doi:10.1007/s13197-015-2161-0

    Google Scholar 

  • Sousa RMOF, Rosa JS, Oliveira L, Cunha A, Fernandes-Ferreira M (2015) Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind Crops Prod 63:226–237. doi:10.1016/j.indcrop.2014.09.052

    Article  CAS  Google Scholar 

  • Southgate BJ (1978) The importance of the Bruchidae as pests of grain legumes, their distribution and control. In: Singh SR, van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic Press, London, pp 219–229

    Google Scholar 

  • Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JMF, Saraiva JA et al (2013) Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crops Prod 43:587–595. doi:10.1016/j.indcrop.2012.07.069

    Article  CAS  Google Scholar 

  • Trematerra P, Fontana F, Mancini M (1996) Analysis of development rates of Sitophilus oryzae (L.) in five cereals of the genus Triticum. J Stored Prod Res 32:315–322. doi:10.1016/S0022-474X(96)00035-5

    Article  Google Scholar 

  • Viteri Jumbo LO, Faroni LRA, Oliveira EE, Pimentel MA, Silva GN (2014) Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Ind Crops Prod 56:27–34. doi:10.1016/j.indcrop.2014.02.038

    Article  CAS  Google Scholar 

  • Waliwitiya R, Kennedy CJ, Lowenberger CA (2009) Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag Sci 65:241–248. doi:10.1002/ps.1675

    Article  CAS  PubMed  Google Scholar 

  • Waliwitiya R, Nicholson RA, Kennedy CJ, Lowenberger CA (2012) The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae). J Med Entomol 49:614–623. doi:10.1603/ME10272

    Article  CAS  PubMed  Google Scholar 

  • Walthal WK, Stark JD (1997) Comparison of two population-level ecotoxicological endpoints: the intrinsic (r m) and instantaneous (r i) rates of increase. Env Toxicol Chem 16:1068–1073. doi:10.1002/etc.5620160529

    Google Scholar 

  • Wing KD, Schnee ME, Sacher M, Connair M (1998) A novel oxadiazine insecticide is bioactivated in lepidopteran larvae. Arch Insect Biochem Physiol 37:91–103

    Article  CAS  Google Scholar 

  • Wong PYY, Kitts DD (2006) Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem 97:505–515. doi:10.1016/j.foodchem.2005.05.031

    Article  CAS  Google Scholar 

  • Yadav S, Mittal PK, Saxena PN, Singh RK (2009) Effect of synergist piperonyl butoxide (PBO) on the toxicity of some essential oils against mosquito larvae. J Commun Dis 41:33–38

    CAS  PubMed  Google Scholar 

  • Yildirim E, Emsen B, Kordali S (2013) Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Appl Bot Food Qual 86:198–204. doi:10.5073/JABFQ.2013.086.027

    CAS  Google Scholar 

  • Zhang H, Chen F, Wang X, Yao H-Y (2006) Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res Int 39:833–839. doi:10.1016/j.foodres.2006.03.007

    Article  CAS  Google Scholar 

  • Zhang Z, Yang T, Zhang Y, Wang L, Xie Y (2016) Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Ind Crops Prod 81:147–151. doi:10.1016/j.indcrop.2015.11.076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grants from the CAPES Foundation, the National Council of Scientific and Technological Development (CNPq), the Minas Gerais State Foundation for Research Aid (FAPEMIG), Secretaria Nacional de Educación Superior Ciencia y Tecnologia of Ecuador (SENESCYT—Ecuador) and the Arthur Bernardes Foundation (FUNARBE) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. R. A. Faroni or E. E. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Furthermore, all applicable international, national and institutional guidelines for the care and use of insects were considered in the present investigation.

Informed consent

The six authors of this manuscript accepted that the paper is submitted for publication in the Journal of Pest Science and reported that this paper has not been published or accepted for publication in another journal, and it is not under consideration at another journal.

Additional information

Communicated by C.G. Athanassiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massango, H.G.L.L., Faroni, L.R.A., Haddi, K. et al. Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus maculatus . J Pest Sci 90, 723–733 (2017). https://doi.org/10.1007/s10340-016-0826-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0826-8

Keywords

Navigation