Skip to main content
Log in

Language evolution as a Darwinian process: computational studies

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

This paper presents computational experiments that illustrate how one can precisely conceptualize language evolution as a Darwinian process. We show that there is potentially a wide diversity of replicating units and replication mechanisms involved in language evolution. Computational experiments allow us to study systemic properties coming out of populations of linguistic replicators: linguistic replicators can adapt to specific external environments; they evolve under the pressure of the cognitive constraints of their hosts, as well as under the functional pressure of communication for which they are used; one can observe neutral drift; coalitions of replicators may appear, forming higher level groups which can themselves become subject to competition and selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. Experimental results and qualitative interpretations suggest that self-reinforcing dynamics of model B converge in N·log(N), where N is the population size. These experimental results can also be interpreted using various formalisms including Markov chains, stochastic games and Polya processes (see Kaplan 2005 for a review).

  2. Thus for replicator c i , the probability of mutation can be expressed by the following formula:

    $$ P_{m} (c_i) = {\frac{i}{\hbox{Number of replicators}}}. $$
    (1)
  3. Let c 1 and c 2 be two chains the length of c 1 being either smaller or equal to the length of c 2. Let k 1(i) and k 2(i) be the character in position i in each of the chain. We define D f as being the sum of the distance between the character of both chains to which is added ten times their length difference, l 2l 1.

    $$ D_c (c_1, c_2) = \sum_i{\|k_1(i)-k_2(i) \|} + 10.(l_2-l_1) $$
    (2)

    For instance the chains 1-4-5-2 and 1-4-5-7-3 are at a distance 5 + 10 = 15. The arbitrary details of this particular distance are not important for the dynamics characterized. They are provided here only to permit a reproduction of the experimental results described.

References

  • Ancel LW, Fontana W (2000) Plasticity, evolvability, and modularity in RNA. J Exp Zool 288:242–283

    Article  PubMed  CAS  Google Scholar 

  • Arita T, Koyama Y (1998) Evolution of linguistic diversity in a simple communication system. In: Adami C, Belew R, Kitano H, Taylor C (eds) Proceedings of Artificial Life VI. The MIT Press, Cambridge, MA, pp 9–17

  • Baronchelli A, Felici M, Loreto V, Caglioti E, Steels L (2006) Sharp transition towards shared vocabularies in multi-agent systems. J Stat Mech P06014

  • Berlinski D (1972) Philosophical aspects of molecular biology. J Philos 69(12):319–335

    Article  Google Scholar 

  • Blevins J (2004) Evolutionary phonology: the emergence of sound patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Blevins J (2006) New perspectives on english sound patterns: natural and unnatural in evolutionary phonology. J Engl Linguist 34:6–25

    Article  Google Scholar 

  • de Boer B (1997) Generating vowel systems in a population of agents In: Husbands P, Harvey I (eds) Proceedings of the Fourth European Conference on Artificial Life. The MIT Press, Cambridge, MA

  • Brighton H, Kirby S, Smith K (2005) Cultural selection for learnability: three hypotheses underlying the view that language adapts to be learnable. In: Tallerman M (ed) Language origins: perspective on evolution. Oxford University Press, Oxford

    Google Scholar 

  • Cangelosi A, Parisi D, (2002) Simulating the evolution of language. Springer, Heidelberg

    Google Scholar 

  • Cangelosi A, Smith AM, Smith K (eds) (2006) The evolution of language. In: Proceedings of the 6th International Conference on the Evolution of Language. World Scientific, Singapore

  • Croft W (2000) Explaining language change. Linguistics. Longman, London

  • Croft W (2002) The darwinization of linguistics. Selection 3:75–91

    Article  Google Scholar 

  • Crow J, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • De Boer B (1999) Self-organizing phonological systems. Ph.D. thesis, VUB University, Brussels

  • De Jong E, Steels L (2003) A distributed learning algorithm for communication development. Complex Syst 14(4–5):315–334

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1997) The ant system: optimisation by a colony of cooperating agents. Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  • van Driem G (2003) The language organism: the leiden theory of language evolution. In: Mírovsky J, Kotesovcova A, Hajicova E (eds) Proceedings of the XVIIth International Congress of Linguists Prague: Matfyzpress vydavatelství Matematicko-fyzikální fakulty Univerzity Karlovy, Prague

  • Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New York

    Google Scholar 

  • Gould SJ, Vrba E (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Hull D (1988) Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, Chicago

    Google Scholar 

  • Hutchins E, Hazlehurst B (1995) How to invent a lexicon: the development of shared symbols in interaction. In: Gilbert N, Conte R (eds) Artificial societies: the computer simulation of social life. UCL Press, London, pp 157–189

    Google Scholar 

  • Kaplan F (2001) La naissance d’une langue chez les robots. Hermes Science, Paris

    Google Scholar 

  • Kaplan F (2005) Simple models of distributed co-ordination. Connect Sci 17(3–4):249–270

    Article  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirby S (2001) Spontaneous evolution of linguistic structure: an iterated learning model of the emergence of regularity and irregularity. IEEE Trans Evol Comput 5(2):102–110

    Article  Google Scholar 

  • Kirby S (2002) Natural language and artificial life. Artif life 8:185–215

    Article  PubMed  Google Scholar 

  • Labov W (1994) Principles of linguistic change, vol 1. Internal factors. Blackwell, Oxford

  • Maynard-Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitchell B, Weinmann L (1997) Creative design for the WWW. Lecture Notes, SIGGRAPH 1997

  • Mufwene SS (2005) Language evolution: the population genetics way, vol 29. Gene, Sprachen, und ihre Evolution, pp 30–52

  • Oliphant M (1997) Formal approaches to innate and learned communicaton: laying the foundation for language. Ph.D. thesis, University of California, San Diego

  • Oudeyer P-Y (2005a) How phonological structures can be culturally selected for learnability. Adapt Behav 13(4):269–280

    Article  Google Scholar 

  • Oudeyer P-Y (2005b) The self-organization of speech sounds. J Theor Biol 233(3):435–449

    Article  Google Scholar 

  • Oudeyer P-Y (2006) Self-organization in the evolution of speech. Oxford University Press, Oxford

    Google Scholar 

  • Schleicher A (1863) Die darwinsche Theorie und die Sprachwissenschaft: Offenes Sendschreiben an Herrn Dr. Ernst Häckel. Böhlau, Weimar

  • Searls DB (2002) The language of genes. Nature 420:211–217

    Article  PubMed  CAS  Google Scholar 

  • Smith ADM (2005) The inferential transmission of language. Adapt Behav 13(4):311–324

    Article  Google Scholar 

  • Sperber D (1984) Anthropology and psychology: towards and epidemiology of representations (the malinowsju memorial lecture 1984). Man 20:73–89

    Article  Google Scholar 

  • Steels L (1996) A self-organizing spatial vocabulary. Artif Life J 2(3):319–332

    Article  Google Scholar 

  • Steels L (2003) Evolving grounded communication for robots. Trends Cogn Sci 7(7):308–312

    Article  PubMed  Google Scholar 

  • Steels L (2004) Analogies between genome and language evolution. In: Pollck J (ed) Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems. The MIT Press, Cambridge, MA, pp 200–207

  • Steels L, Belpaeme T (2005) Coordinating perceptually grounded categories through language: a case study for colour. Behav Brain Sci 28:469–529

    Article  PubMed  Google Scholar 

  • Steels L, Kaplan F (2002) Bootstrapping grounded word semantics. In: Briscoe T (ed) Linguistic evolution through language acquisition: formal and computational models. Cambridge University Press, Cambridge, pp 53–74

    Google Scholar 

  • Steels L, Kaplan F (1998) Spontaneous lexicon change. In: Proceedings of COLING-ACL 1998. Morgan Kaufmann, San Francisco, CA, pp 1243–1250

  • Stegmann UE (2004) The arbitrariness of the genetic code. Biol Philos 19(2):205–222

    Article  Google Scholar 

  • Tsonis AA, Elsner JB, Tsonis PA (1997) Is DNA a language? J Theor Biol 184:25–29

    Article  PubMed  CAS  Google Scholar 

  • Vogt P (2005) The emergence of compositional structure in perceptually grounded language games. Artif Intell 167(1–2):206–242

    Article  Google Scholar 

  • Watson J, Crick F (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Zuidema W (2003) How the poverty of the stimulus solves the poverty of the stimulus. In: Becker S, Obermayer K (eds) Advances in Neural Information Processing 15. MIT Press, Cambridge, pp 51–68

    Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the ECAGENTS project founded by the Future and Emerging Technologies programme (IST-FET) of the European Community under EU R&D contract IST-2003-1940.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Oudeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oudeyer, PY., Kaplan, F. Language evolution as a Darwinian process: computational studies. Cogn Process 8, 21–35 (2007). https://doi.org/10.1007/s10339-006-0158-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-006-0158-3

Keywords

Navigation