Skip to main content
Log in

Wave Propagation in Viscoelastic Functionally Graded Nanoplates: Comparison of the Integral and Differential Nonlocal Models

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

As one of the popular non-classical continuum theories in functionally graded material (FGM) nanostructures, the modified nonlocal theory (MNT) has been applied in various mechanical problems. However, due to the difficult solution process, the original integral formulation of MNT (IMNT) is transformed into a differential formulation of MNT (DMNT), which results in an inevitable approximation error. To clarify the consistency and difference between two formulations, the Lamb wave characteristics in viscoelastic FGM nanoplates are investigated. Two mathematical models are established based on the IMNT and DMNT, and solved by the proposed displacement-based and strain-based Legendre polynomial series approaches (LPSAs), respectively. Comparisons with the available data verify the validates of the presented LPSAs. Numerical examples indicate that the results from the DMNT and IMNT are significantly different at high frequencies. Several important differences are discovered. For example, the escape frequency only appears in the results from DMNT, but not in IMNT. In addition to comparing with classical structures, more attention should be paid to the attenuation characteristics of nonlocal nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Lim CW, Zhang G, Reddy GN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.

    Article  MathSciNet  MATH  Google Scholar 

  2. Sheikhlou M, Sadeghi F, Najafi S, et al. Surface and nonlocal effects on the thermoelastic damping in axisymmetric vibration of circular graphene nanoresonators. Acta Mech Solid Sin. 2022;35:527–40.

    Article  Google Scholar 

  3. Abouelregal AE. Size-dependent thermoelastic initially stressed micro-beam due to a varying temperature in the light of the modified couple stress theory. Appl Math Mech-Engl Ed. 2020;41(12):1805–20.

    Article  MathSciNet  MATH  Google Scholar 

  4. Alihemmati J, Tadi BY. Generalized thermoelasticity of microstructures: Lord-Shulman theory with modified strain gradient theory. Mech Mater. 2022;172:104412.

    Article  Google Scholar 

  5. Wang LH, Wang LY, Han HJ, et al. Surface effects on nano-contact based on surface energy density. Arch Appl Mech. 2021;91(10):4179–90.

    Article  Google Scholar 

  6. Hu B, Liu J, Zhang B, et al. Wave propagation in graphene platelet-reinforced piezoelectric sandwich composite nanoplates with nonlocal strain gradient effects. Acta Mech Solid Sin. 2021;34:494–505.

    Article  Google Scholar 

  7. Jiang JN, Wang LF. Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions. Acta Mech Solid Sin. 2017;30:474–83.

    Article  Google Scholar 

  8. Biswas S. Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space. Acta Mech. 2020;231(10):4129–44.

    Article  MathSciNet  MATH  Google Scholar 

  9. Yan ZZ, Wei CQ, Zhang CZ. Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method. Acta Mech Solid Sin. 2017;30:390–403.

    Article  Google Scholar 

  10. Kiani K, Roshan M. Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles. Int J Mech Sci. 2019;152:576–95.

    Article  Google Scholar 

  11. Eringen CA. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–10.

    Article  Google Scholar 

  12. Salehipour H, Shahidi AR, Nahvi H. Modified nonlocal elasticity theory for functionally graded materials. Int J Eng Sci. 2015;90:44–57.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li L, Hu Y, Ling L. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct. 2015;133:1079–92.

    Article  Google Scholar 

  14. Karami B, Shahsavari D, Li L. Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field. J Therm Stress. 2017;41(4–6):483–99.

    Google Scholar 

  15. Ebrahimi F, Barati MR, Dabbagh A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci. 2016;107:169–82.

    Article  Google Scholar 

  16. Norouzzadeh A, Ansari R, Rouhi H. An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity. Waves Random Complex Media. 2020;30(3):562–80.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaplunov J, Prikazchikov DA, Prikazchikova L. On integral and differential formulations in nonlocal elasticity. Analysis of PDEs. (2022); 104497.

  18. Zhu F, Wang B, Qian ZH, et al. Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates. Int J Solid Struct. 2018;150:52–65.

    Article  Google Scholar 

  19. Yu JG, Wang XH, Zhang XM, et al. An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates. Math Methods Appl Sci. 2022;45(12):7631–51.

    Article  MathSciNet  Google Scholar 

  20. Othmani C, Zhang H, Lü CF, et al. Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites-a review. Compos Struct. 2022;286:115245.

    Article  Google Scholar 

  21. Zheng MF, He CF, Lyu Y, et al. State-vector formalism and the Legendre polynomial solution for modelling guided waves in anisotropic plates. J Sound Vib. 2018;412:372–88.

    Article  Google Scholar 

  22. Lefebvre JE, Yu JG, Ratolojanahary FE, et al. Mapped orthogonal functions method applied to acoustic waves-based devices. AIP Adv. 2016;6(6):065307.

    Article  Google Scholar 

  23. Li Z, Yu JG, Zhang XM, et al. Guided wave propagation in functionally graded fractional viscoelastic plates: a quadrature-free Legendre polynomial method. Mech Adv Mater Struct. 2022;29(16):2284–97.

    Article  Google Scholar 

  24. Hong K, Yuan L, Shen ZH, et al. Analysis of Lamb waves propagation in functional gradient materials using Taylor expansion method. Acta Phys Sin. 2011;60(10):426–32.

    Google Scholar 

  25. Hernando Quintanilla F, Fan Z, Lowe MJS, et al. Guided waves’ dispersion curves in anisotropic viscoelastic single- and multi-layered media. Proc Royal Soc A. 2015;471:20150268.

    Article  Google Scholar 

  26. Liu H, Yang TL. Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity. Phys E. 2012;44:1236–40.

    Article  Google Scholar 

  27. Wang XH, Li FL, Zhang B, et al. Wave propagation in thermoelastic inhomogeneous hollow cylinders by analytical integration orthogonal polynomial approach. Appl Math Model. 2021;99(7):57–80.

    Article  MathSciNet  MATH  Google Scholar 

  28. Bartoli I, Marzani A, di Scalea F, et al. Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib. 2006;295:685–707.

    Article  Google Scholar 

  29. Yan DJ, Chen AL, Wang YS, et al. Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites. Eur J Mech A Solid. 2017;66:158–67.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang LL, Liu JX, Fang XQ, et al. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. Eur J Mech A/solid. 2014;46:22–9.

    Article  Google Scholar 

  31. Chakraborty A. Wave propagation in anisotropic media with non-local elasticity. Int J Solid Struct. 2007;44(17):5723–41.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (No. 2021M701102), Henan University Science and Technology Innovation Team Support Plan (No. 23IRTSTHN016), and Innovative research team of Henan Polytechnic University (No. T2022-4).

Funding

Project funded by China Postdoctoral Science Foundation, 2021M701102, Xianhui Wang, Henan University Science and Technology Innovation Team Support Plan, 23IRTSTHN016, Jiangong Yu.

Author information

Authors and Affiliations

Authors

Contributions

XW contributed to methodology, writing—original draft, funding, and software. YC contributed to investigation, and formal analysis. JY contributed to writing—review, and funding acquisition.

Corresponding author

Correspondence to Jiangong Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors agree to publish the paper in this journal with the consent of the employer.

Appendices

Appendix A

Letting t = (2zh)/h, and defining

$$ \begin{gathered} u\left[ {\alpha ,\beta ,\gamma } \right] \hfill \\\quad = \frac{1}{{2\lambda h^{\alpha } }}\int_{ - 1}^{1} {\left( {2z - h} \right)^{\alpha } Q_{n} (z)\frac{{{\text{d}}^{\gamma } }}{{{\text{d}}z^{\gamma } }}\int_{ - 1}^{1} {{\text{e}}^{{ - \frac{{\left| {v - z} \right|}}{\lambda }}} \frac{{{\text{d}}^{\beta } }}{{{\text{d}}v^{\beta } }}Q_{m} (v){\text{d}}v} {\text{d}}z} \hfill \\v\left[ {\alpha ,\beta } \right] = \frac{1}{{h^{\alpha } }}\int_{ - 1}^{1} {\left( {2z - h} \right)^{\alpha } Q_{n} (z)\frac{{{\text{d}}^{\beta } }}{{{\text{d}}z^{\beta } }}Q_{m} (z){\text{d}}z} \hfill \\w\left[ {\alpha ,\beta ,\gamma } \right] \hfill\\\qquad = \frac{1}{{2\lambda h^{\alpha } }}\int_{ - 1}^{1} {\left( {2z - h} \right)^{\alpha } Q_{n} (z)\frac{{{\text{d}}^{\gamma } }}{{{\text{d}}z^{\gamma } }} \int_{ - 1}^{1} {{\text{e}}^{{ - \frac{{\left| {v - z} \right|}}{\lambda }}} \frac{{{\text{d}}^{\beta } }}{{{\text{d}}v^{\beta } }}Q_{m} (v){\text{d}}v} \frac{{{\text{d}}\pi \left( z \right)}}{{{\text{d}}z}}{\text{d}}z} \hfill \\\end{gathered} $$

where n and m are from 0 to N. The detailed expressions for A, B and D in Eq. (18) are given here.

$$ \begin{gathered} A_{11}^{n,m} = - C_{11}^{\left( j \right)} u\left[ {j,0,0} \right] \hfill \\ B_{12}^{n,m} = {\text{i}}C_{13}^{\left( j \right)} u\left[ {j,1,0} \right] + {\text{i}}2jC_{55}^{\left( j \right)} u\left[ {j - 1,0,0} \right]/h\hfill \\ \qquad + {\text{i}}C_{55}^{\left( j \right)} u\left[ {j,0,1} \right] + {\text{i}}C_{55}^{\left( j \right)} w\left[ {j,0,0} \right] \hfill \\ D_{11}^{n,m} = 2jC_{55}^{\left( j \right)} u\left[ {j - 1,1,0} \right]/h + C_{55}^{\left( j \right)} u\left[ {j,1,1} \right]\hfill \\ \qquad + C_{55}^{\left( j \right)} w\left[ {j,1,0} \right] + \omega^{2} \rho^{\left( j \right)} v\left[ {j,0} \right] \hfill \\ A_{22}^{n,m} = - C_{55}^{\left( j \right)} u[j,0,0] \hfill \\ B_{21}^{n,m} = {\text{i}}C_{55}^{\left( j \right)} u[j,1,0] + {\text{i}}2jC_{13}^{\left( j \right)} u[j - 1,0,0]/h\hfill \\ \qquad + {\text{i}}C_{13}^{\left( j \right)} u[j,0,1] + {\text{i}}C_{13}^{\left( j \right)} w[j,0,0] \hfill \\ D_{22}^{n,m} = 2jC_{33}^{\left( j \right)} u[j - 1,1,0]/h + C_{33}^{\left( j \right)} u[j,1,1]\hfill \\ \qquad + C_{33}^{\left( j \right)} w[j,1,0] + \omega^{2} \rho^{\left( j \right)} v[j,0] \hfill \\ \end{gathered} $$

Appendix B

Refining

$$ \begin{aligned} & u\left[ {\alpha ,\beta } \right] = \left( \frac{1}{h} \right)^{\alpha } \int_{ - 1}^{1} {\left( {2z - h} \right)^{\alpha } Q_{n} (z)\frac{{{\text{d}}^{\beta } }}{{{\text{d}}z^{\beta } }}Q_{m} (z){\text{d}}z} \\& v\left[ {\alpha ,\beta ,\gamma } \right] = \left( \frac{1}{h} \right)^{\alpha } \int_{ - 1}^{1} {\left( {2z - h} \right)^{\alpha } Q_{n} (z)\frac{{{\text{d}}^{\beta } }}{{{\text{d}}z^{\beta } }}Q_{m} (z)\frac{{{\text{d}}^{\gamma } \pi \left( z \right)}}{{{\text{d}}z^{\gamma } }}{\text{d}}z}\end{aligned} $$

where n and m are from 0 to N. The detailed expressions for G, E and F in Eq. (28) are given here.

$$ \begin{gathered} G_{11}^{nm} = \omega^{2} \lambda^{2} \rho^{\left( p \right)} u\left[ {p,0} \right] - C_{11}^{\left( j \right)} u\left[ {j,0} \right] \hfill \\ G_{12}^{nm} = - C_{13}^{\left( j \right)} u\left[ {j,0} \right] \hfill \\ E_{13}^{nm} = 2{\text{i}}C_{55}^{\left( j \right)} \left( {2ju\left[ {j - 1,0} \right]/h + u\left[ {j,1} \right] + v\left[ {j,0,1} \right]} \right) \hfill \\ F_{11}^{nm} = \omega^{2} \rho^{\left( p \right)} u\left[ {p,0} \right] - \omega^{2} \rho^{\left( p \right)} \lambda^{2} u\left[ {p,2} \right] \hfill \\ G_{22}^{nm} = \omega^{2} \lambda^{2} \rho^{{\left( {2p} \right)}} u[2p,0] \hfill \\ E_{23}^{nm} = 2{\text{i}}\rho^{\left( p \right)} C_{55}^{\left( j \right)} (2ju[j + p - 1,0]/h + u[j + p,1] \hfill \\ \qquad + v[j + p,0,1] - 2pu[j + p - 1,0]/h) \hfill \\ \end{gathered} $$
$$ F_{21}^{nm} = C_{13}^{(j)} \rho^{(p)}\left[ \begin{gathered} ({4j( {j - 1} ) - 4jp} )u[j + p - 2,0]/h^{2}\hfill \\ \qquad + u[j + p,2] + 2v[j + p,1,1] + v[j + p,0,2] \hfill \\ \qquad + ( {4j - 2p} )( u[j + p - 1,1] \hfill \\ \qquad + v[j +p - 1,0,1])/h \hfill \\ \end{gathered} \right] $$
$$ \begin{gathered} F_{22}^{nm} = C_{33}^{(j)} \rho^{(p)}\Big[( {4j( {j - 1} ) - 4jp} )u[j + p - 2,0]/h^{2}\hfill \\\qquad + ( {4j - 2p} )({u[j + p - 1,1] + v[j + p - 1,0,1]} )/h \Big] \hfill \\\qquad + C_{33}^{( j )} \rho^{( p )} ( {u[j + p,2] + 2v[j + p,1,1] +v[j + p,0,2]} )\hfill \\\qquad + \omega^{2} \rho^{{( {2p} )}} u[2p,0] - \omega^{2}\rho^{{( {2p})}} \lambda^{2} u[2p,2]\hfill \\\end{gathered} $$
$$ \begin{gathered} G_{33}^{nm} = 2\omega^{2} \lambda^{2} \rho^{{\left( {2p} \right)}} u[2p,0] - 2\rho^{\left( p \right)} C_{55}^{\left( j \right)} u[j + p,0] \hfill \\E_{31}^{nm} = {\text{i}}\rho^{\left( p \right)} \Big(\left( {C_{11}^{\left( j \right)} + C_{13}^{\left( j \right)} } \right)\left( {2ju[j + p - 1,0]/h + u[j + p,1]} \right)\hfill \\\qquad \quad - 2pC_{11}^{\left( j \right)} u[j + p - 1,0]/h + C_{13}^{\left( j \right)} v[j + p,0,1] \Big) \hfill \\E_{32}^{nm} = {\text{i}}\rho^{\left( p \right)} \Big[\left( {C_{13}^{\left( j \right)} + C_{33}^{\left( j \right)} } \right) (2ju[j + p - 1,0]/h+ u[j + p,1])\hfill \\\qquad \quad - 2pC_{13}^{\left( j \right)} u[j + p - 1,0]/h + C_{33}^{\left( j \right)} v[j + p,0,1] \Big] \hfill \\F_{33}^{nm} = C_{55}^{\left( j \right)} \rho^{\left( p \right)} \Big[\left( {8j\left( {j - 1} \right) - 8jp} \right)u[j + p - 2,0]/h^{2} \hfill \\\qquad \quad + \left( {8j - 4p} \right)\left( {u[j + p - 1,1] + v[j + p - 1,0,1]} \right)/h\Big] \hfill \\\qquad \quad + 4v[j + p,1,1] + 2v[j + p,0,2] + 2u[j + p,2] \hfill \\\qquad \quad + \omega^{2} \rho^{{\left( {2p} \right)}} u[2p,0]-\omega^{2}\lambda^{2} \rho^{{\left( {2p} \right)}} u[2p,2] \hfill \\\end{gathered} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, Y. & Yu, J. Wave Propagation in Viscoelastic Functionally Graded Nanoplates: Comparison of the Integral and Differential Nonlocal Models. Acta Mech. Solida Sin. 36, 724–733 (2023). https://doi.org/10.1007/s10338-023-00398-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00398-9

Keywords

Navigation