Skip to main content
Log in

Modeling of Cyclic Bending of Thin Foils Using Higher-Order Strain Gradient Plasticity

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The plastic behaviors of thin metallic foils, including size effect, Bauschinger effect, and passivation effect, are studied under cyclic bending condition using the strain gradient visco-plasticity theory. The finite element simulations are performed on the cyclic bending of the elasto-viscoplastic thin foils with passivated and unpassivated surfaces. The study is also conducted on the transition from a passivated surface to an unpassivated one. The roles of the dissipative and energetic gradient terms are emphasized. From the results, it is found that the dissipative gradient terms increase the yield strength, while the energetic gradient terms increase the strain hardening, resulting in an anomalous Bauschinger effect. Further, it is observed that the surface passivation effect increases both the normalized bending moment at initial yielding and strain hardening. The comparison between the numerical results of cases with and without passivation demonstrates that the switching of boundary conditions significantly affects the plastic behavior of the foils under cyclic bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen Y, Kraft O, Walter M. Size effects in thin coarse-grained gold microwires under tensile and torsional loading. Acta Mater. 2015;87:78–85.

    Article  Google Scholar 

  2. Dunstan DJ, Ehrler B, Bossis R, Joly S, P’ng KMY, Bushby AJ. Elastic limit and strain hardening of thin wires in torsion. Phys Rev Lett. 2009;103:155501.

    Article  Google Scholar 

  3. Ehrler B, Hou X, Zhu TT, P’ng KMY, Walker CJ, Bushby AJ, Dunstan DJ. Grain size and sample size interact to determine strength in a soft metal. Philos Mag. 2008;88:3043–50.

    Article  Google Scholar 

  4. Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: theory and experiment. Acta Met Mater. 1994;42:475–87.

    Article  Google Scholar 

  5. Haque MA, Saif MTA. Strain gradient effect in nanoscale thin films. Acta Mater. 2003;51:3053–61.

    Article  Google Scholar 

  6. Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H. Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Phys Rev Lett. 2013;110:244301.

    Article  Google Scholar 

  7. Liu D, He Y, Shen L, Lei J, Guo S, Peng K. Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity. Mater Sci Eng A Struct. 2015;647:84–90.

    Article  Google Scholar 

  8. Liu D, He Y, Tang X, Ding H, Hu P. Size effects in the torsion of microscale copper wires: experiment and analysis. Scr Mater. 2012;66:406–9.

    Article  Google Scholar 

  9. Ma Q, Clarke DR. Size dependent hardness of silver single crystals. J Mater Res. 1995;10:853–63.

    Article  Google Scholar 

  10. Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solid. 1998;46:411–25.

    Article  MATH  Google Scholar 

  11. Stelmashenko NA, Walls MG, Brown LM, Milman YV. Microindentations on W and Mo oriented single crystals: an STM study. Acta Met Mater. 1993;41:2855–65.

    Article  Google Scholar 

  12. Stölken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998;46:5109–15.

    Article  Google Scholar 

  13. Aifantis EC. On the microstructural origin of certain inelastic models. J Eng Mater Trans ASME. 1984;106:326–30.

    Article  Google Scholar 

  14. Mühlhaus HB, Aifantis EC. A variational principle for gradient plasticity. Int J Solid Struct. 1991;28:845–57.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fleck NA, Hutchinson JW. Strain gradient plasticity. Adv Appl Mech. 1997;33:295–361.

    Article  MATH  Google Scholar 

  16. Fleck NA, Hutchinson JW. A reformulation of strain gradient plasticity. J Mech Phys Solid. 2001;49:2245–71.

    Article  MATH  Google Scholar 

  17. Gudmundson P. A unified treatment of strain gradient plasticity. J Mech Phys Solid. 2004;52:1379–406.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gurtin ME. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J Mech Phys Solid. 2004;52:2545–68.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gurtin ME, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J Mech Phys Solid. 2005;53:1624–49.

    Article  MATH  Google Scholar 

  20. Gurtin ME, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations. Int J Plast. 2005;21:2297–318.

    Article  MATH  Google Scholar 

  21. Fleck NA, Willis JR. A mathematical basis for strain-gradient plasticity theory–Part I: scalar plastic multiplier. J Mech Phys Solids. 2009;57:161–77.

    Article  MathSciNet  MATH  Google Scholar 

  22. Fleck NA, Willis JR. A mathematical basis for strain-gradient plasticity theory. Part II: tensorial plastic multiplier. J Mech Phys Solids. 2009;57:1045–57.

    Article  MathSciNet  MATH  Google Scholar 

  23. Nye JF. Some geometrical relations in dislocated crystals. Acta Metall. 1953;1:153–62.

    Article  Google Scholar 

  24. Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424.

    Article  Google Scholar 

  25. Yeo IS, Anderson SGH, Jawarani D, Ho PS, Clarke AP, Saimoto S, Ramaswami S, Cheung R. Effects of oxide overlayer on thermal stress and yield behavior of Al alloy films. J Vac Sci Technol B. 1996;14:2636–44.

    Article  Google Scholar 

  26. Evans AG, Hutchinson JW. A critical assessment of theories of strain gradient plasticity. Acta Mater. 2009;57:1675–88.

    Article  Google Scholar 

  27. Hutchinson JW. Plasticity at the micron scale. Int J Solids Struct. 2000;37:225–38.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiang Y, Vlassak JJ. Bauschinger and size effects in thin-film plasticity. Acta Mater. 2006;54:5449–60.

    Article  Google Scholar 

  29. Mu Y, Hutchinson JW, Meng WJ. Micro-pillar measurements of plasticity in confined Cu thin films. Extreme Mech Lett. 2014;1:62–9.

    Article  Google Scholar 

  30. Mu Y, Zhang X, Hutchinson JW, Meng WJ. Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. J Mater Res. 2017;32:1421–31.

    Article  Google Scholar 

  31. Hua F, Liu D, Li Y, He Y, Dunstan DJ. On energetic and dissipative gradient effects within higher-order strain gradient plasticity: size effect, passivation effect, and Bauschinger effect. Int J Plast. 2021;141:102994.

    Article  Google Scholar 

  32. Bardella L, Panteghini A. Modelling the torsion of thin metal wires by distortion gradient plasticity. J Mech Phys Solids. 2015;78:467–92.

    Article  MathSciNet  MATH  Google Scholar 

  33. Fleck NA, Hutchinson JW, Willis JR. Strain gradient plasticity under non-proportional loading. Proc R Soc A Math Phys. 2014;470:20140267.

    MathSciNet  Google Scholar 

  34. Gudmundson P, Dahlberg CFO. Isotropic strain gradient plasticity model based on self-energies of dislocations and the Taylor model for plastic dissipation. Int J Plast. 2019;121:1–20.

    Article  Google Scholar 

  35. Hua F, Liu D. On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation. Acta Mech Sin. 2020;36:840–54.

    Article  MathSciNet  Google Scholar 

  36. Hua F, Liu D, He Y. Modelling the effect of surface passivation within higher-order strain gradient plasticity: the case of wire torsion. Eur J Mech Solid. 2019;78:103855.

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuroda M, Needleman A. A simple model for size effects in constrained shear. Extreme Mech Lett. 2019;33:100581.

    Article  Google Scholar 

  38. Martínez-Pañeda E, Niordson CF, Bardella L. A finite element framework for distortion gradient plasticity with applications to bending of thin foils. Int J Solid Struct. 2016;96:288–99.

    Article  Google Scholar 

  39. Voyiadjis GZ, Song Y. Effect of passivation on higher order gradient plasticity models for non-proportional loading: energetic and dissipative gradient components. Philos Mag. 2017;97:318–45.

    Article  Google Scholar 

  40. Demir E, Raabe D. Mechanical and microstructural single-crystal Bauschinger effects: observation of reversible plasticity in copper during bending. Acta Mater. 2010;58:6055–63.

    Article  Google Scholar 

  41. Guo S, He Y, Tian M, Liu D, Li Z, Lei J, Han S. Size effect in cyclic torsion of micron-scale polycrystalline copper wires. Mater Sci Eng A Struct. 2020;792:139671.

    Article  Google Scholar 

  42. Kuroda M, Tvergaard V. An alternative treatment of phenomenological higher-order strain-gradient plasticity theory. Int J Plast. 2010;26:507–15.

    Article  MATH  Google Scholar 

  43. Panteghini A, Bardella L. Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity. Philos Mag. 2020;100:2352–64.

    Article  Google Scholar 

  44. Hayashi I, Sato M, Kuroda M. Strain hardening in bent copper foils. J Mech Phys Solid. 2011;59:1731–51.

    Article  Google Scholar 

  45. Kiener D, Motz C, Grosinger W, Weygand D, Pippan R. Cyclic response of copper single crystal micro-beams. Scr Mater. 2010;63:500–3.

    Article  Google Scholar 

  46. Panteghini A, Bardella L. On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility. Comput Methods Appl Math. 2016;310:840–65.

    MathSciNet  MATH  Google Scholar 

  47. Fuentes-Alonso S, Martínez-Pañeda E. Fracture in distortion gradient plasticity. Int J Eng Sci. 2020;156:103369.

    Article  MathSciNet  MATH  Google Scholar 

  48. Panteghini A, Bardella L, Niordson CF. A potential for higher-order phenomenological strain gradient plasticity to predict reliable response under non-proportional loading. Proc Math Phys Eng Sci. 2019;475:20190258.

    MathSciNet  MATH  Google Scholar 

  49. Martínez-Pañeda E, Deshpande VS, Niordson CF, Fleck NA. The role of plastic strain gradients in the crack growth resistance of metals. J Mech Phys Solid. 2019;126:136–50.

    Article  MathSciNet  Google Scholar 

  50. Danas K, Deshpande VS, Fleck NA. Size effects in the conical indentation of an elasto-plastic solid. J Mech Phys Solid. 2012;60:1605–25.

    Article  MathSciNet  Google Scholar 

  51. Nielsen KL, Niordson C. A 2D finite element implementation of the Fleck–Willis strain-gradient flow theory. Eur J Mech Solid. 2013;41:134–42.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China under Grant 11702103, and the Young Top-notch Talent Cultivation Program of Hubei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabiao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Hua, F. & Liu, D. Modeling of Cyclic Bending of Thin Foils Using Higher-Order Strain Gradient Plasticity. Acta Mech. Solida Sin. 35, 616–631 (2022). https://doi.org/10.1007/s10338-021-00306-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00306-z

Keywords

Navigation