Skip to main content
Log in

The Shock Response and Spall Mechanism of Mg–Al–Zn Alloy: Molecular Dynamics Study

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Shock responses of Mg–Al–Zn alloy are investigated by the molecular dynamics (MD) method. The wave propagation, plastic deformation behavior and failure mechanism along the [0001] and [\(10\bar{1}0\)] orientations are analyzed. For both orientations, simulation results show that the shock wave has an obvious double-wave structure (plastic-elastic) under a piston velocity of 1200 m/s. A higher Hugoniot elastic limit (HEL) is observed for [0001]-oriented shock. When the shock pressure is along the [\(10\bar{1}0\)] direction, the distance between plastic and elastic waves is closer, and higher dislocation density and more twins are observed. Moreover, the spall strength for [\(10\bar{1}0\)]-oriented shock is predicted to be higher. In addition, the wave interactions, HEL and spall strength predicted for Mg–Al–Zn alloy are compared with the experimental results and MD simulation results of Mg single crystal in the literature. It is concluded that the shock performance of Mg–Al–Zn is better than that of Mg single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34. https://doi.org/10.1016/j.biomaterials.2005.10.003.

    Article  Google Scholar 

  2. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2010;10:3–14. https://doi.org/10.1002/adem.200800035.

    Article  Google Scholar 

  3. Luo Q, Guo YL, Liu B, Feng YJ, Zhang JY. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: a critical review. J Mater Sci Technol. 2020;44:173–92. https://doi.org/10.1016/j.jmst.2020.01.022.

    Article  Google Scholar 

  4. Chen Y, Hu G, Lan Y, Zhang K, Cai G. Constitutive modeling of slip, twinning and detwinning for Mg alloy and inhomogeneous evolution of microstructure. Acta Mech Solida Sin. 2018;31:493–511. https://doi.org/10.1007/s10338-018-0028-4.

    Article  Google Scholar 

  5. Wang CJ, Jiang BL, Liu M, Ge YF. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy. J Alloys Compd. 2015;621:53–61. https://doi.org/10.1016/j.jallcom.2014.09.168.

    Article  Google Scholar 

  6. Aitken ZH, Fan HD, El-Awady JA, Greer JR. The effect of size, orientation and alloying on the deformation of AZ31 nanopillars. J Mech Phys Solids. 2015;76:208–23. https://doi.org/10.1016/j.jmps.2014.11.014.

    Article  Google Scholar 

  7. Yu MD, Cui ZY, Ge F, Lin Y, Lei L, Wang X, Cheng YF. Facile fabrication of hydrophobic polysiloxane coatings for protection of AZ31 magnesium alloy. J Mater Sci. 2019;54:1–16. https://doi.org/10.1007/s10853-019-03544-2.

    Article  Google Scholar 

  8. Mishra S, Yadava M, Kulkarni KN, Gurao NP. Stress relaxation behavior of an aluminium magnesium silicon alloy in different temper condition. Mech Mater. 2018;125:80–93. https://doi.org/10.1016/j.mechmat.2018.07.010.

    Article  Google Scholar 

  9. Yang XY, Xu S, Chi QJ. Plastic deformation behavior of Bi-Crystal magnesium nanopillars with a \(\{\) 10-12 \(\}\) twin boundary under compression: molecular dynamics simulations. Materials. 2019;12:1–13. https://doi.org/10.3390/ma12050750.

    Article  Google Scholar 

  10. Toghyani S, Khodaei M. Fabrication and characterization of magnesium scaffold using different processing parameters. Mater Res Express. 2018;5:1–8. https://doi.org/10.1088/2053-1591/aab6db.

    Article  Google Scholar 

  11. Rui C, Wang T, Wang C, Feng Z, Lin QL. Cold metal transfer welding-brazing of pure titanium TA2 to magnesium alloy AZ31B. J Alloys Compd. 2014;605:12–20. https://doi.org/10.1016/j.jallcom.2014.03.051.

    Article  Google Scholar 

  12. Wang TX, Zuanetti B, Prakash V. Shock response of commercial purity polycrystalline magnesium under uniaxial strain at elevated temperatures. J Dyn Behav Mater. 2017;3:1–13. https://doi.org/10.1007/s40870-017-0128-0.

    Article  Google Scholar 

  13. Bringa E, Caro A, Wang Y, Victoria M, Mcnaney J, Remington B, Smith R, Torralva B, Van Swygenhoven H. Ultrahigh strength in nanocrystalline materials under shock loading. Science. 2005;309:1838–41. https://doi.org/10.1126/science.1116723.

    Article  Google Scholar 

  14. Agarwal G, Dongare AM. Shock wave propagation and spall failure in single crystal Mg at atomic scales. J Appl Phys. 2016;119:145901. https://doi.org/10.1063/1.4944942.

    Article  Google Scholar 

  15. Lin EQ, Shi HJ, Niu LS. Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper. Model Simul Mater Sci Eng. 2014;22:35012. https://doi.org/10.1088/0965-0393/22/3/035012.

    Article  Google Scholar 

  16. Wen P, Tao G, Pang CQ, Yuan SQ, Wang Q. A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Comput Mater Sci. 2016;124:304–10. https://doi.org/10.1016/j.commatsci.2016.08.010.

    Article  Google Scholar 

  17. Xiong QL, Kitamura T, Li ZH. Cylindrical voids induced deformation response of single crystal coppers during low-speed shock compressions: a molecular dynamics study. Mech Mater. 2019;138:1–13. https://doi.org/10.1016/j.mechmat.2019.103167.

    Article  Google Scholar 

  18. Galitskiy S, Ivanov DS, Dongare AM. Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales. J Appl Phys. 2018;124:205901. https://doi.org/10.1063/1.5051618.

    Article  Google Scholar 

  19. Liao Y, Xiang M, Zeng X, Chen J. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum. Mech Mater. 2015;84:12–27. https://doi.org/10.1016/j.mechmat.2015.01.007.

    Article  Google Scholar 

  20. Zong H, Ding X, Lookman T, Sun J. Twin boundary activated \(\alpha > \omega \) phase transformation in titanium under shock compression. Acta Mater. 2016;115:1–9. https://doi.org/10.1016/j.actamat.2016.05.037.

    Article  Google Scholar 

  21. Wu L, Wang K, Xiao SF, Deng HQ, Zhu WJ, Hu WY. Atomistic studies of shock-induced phase transformations in single crystal iron with cylindrical nanopores. Comput Mater Sci. 2016;122:1–10. https://doi.org/10.1016/j.commatsci.2016.05.010.

    Article  Google Scholar 

  22. Kanel GI, Garkushin GV, Savinykh AS, Razorenov SV, De Resseguier T, Proud WG, Tyutin MR. Shock response of magnesium single crystals at normal and elevated temperatures. J Appl Phys. 2014;116:143504. https://doi.org/10.1063/1.4897555.

    Article  Google Scholar 

  23. Knudson MD, Desjarlais MP, Lemke RW. Shock compression experiments on Lithium Deuteride (LiD) single crystals. J Appl Phys. 2016;120:1–9. https://doi.org/10.1063/1.4972553.

    Article  Google Scholar 

  24. Lubarda VA, Schneider MS, Kalantar DH, Remington BA, Meyers MA. Void growth by dislocation emission. Acta Mater. 2004;52:1397–408. https://doi.org/10.1016/j.actamat.2003.11.022.

    Article  Google Scholar 

  25. Winey JM, Renganathan P, Gupta YM. Shock wave compression and release of hexagonal-close-packed metal single crystals: inelastic deformation of c-axis magnesium. J Appl Phys. 2015;117:409. https://doi.org/10.1063/1.4914525.

    Article  Google Scholar 

  26. Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov V. Probing the limits of metal plasticity with molecular dynamics simulations. Nature. 2017;550:492–5. https://doi.org/10.1038/nature23472.

    Article  Google Scholar 

  27. Fan HD, El-Awady JA. Molecular dynamics simulations of orientation effects during tension, compression, and bending deformations of magnesium nanocrystals. J Appl Mech. 2015;82:101006. https://doi.org/10.1115/1.4030930.

    Article  Google Scholar 

  28. Curran DR, Seaman L, Shockey DA. Dynamic failure of solids. Phys Rep. 1987;147:253–388. https://doi.org/10.1016/0370-1573(87)90049-4.

    Article  Google Scholar 

  29. Mackenchery K, Valisetty RR, Namburu RR, Stukowski A, Rajendran AM, Dongare AM. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu. J Appl Phys. 2016;119:817–22. https://doi.org/10.1063/1.4939867.

    Article  Google Scholar 

  30. Dickel DE, Baskes MI, Aslam I, Barrett C. New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys. Model Simul Mater Sci Eng. 2018;26:1–15. https://doi.org/10.1088/1361-651X/aabaad.

    Article  Google Scholar 

  31. Huang ZW, Zhao YH, Hou H, Han PD. Electronic structural, elastic properties and thermodynamics of Mg\(_{17}\)Al\(_{12}\), Mg\(_{2}\)Si and Al\(_{2}\)Y phases from first-principles calculations. Phys B Condens Matter. 2012;407:1075–81. https://doi.org/10.1016/j.physb.2011.12.132.

    Article  Google Scholar 

  32. Yang XM, Hou H, Zhao YH, Yang L, De Han P. First-principles investigation of the structural, electronic and elastic properties of Mg\(_{x}\)Al\(_{4x}\)Sr( x\(=\)0, 0.5, 1) phases. Comput Mater Sci. 2014;84:374–80. https://doi.org/10.1016/j.commatsci.2013.12.036.

    Article  Google Scholar 

  33. Ganeshan S, Shang SL, Wang Y, Liu ZK. Effect of alloying elements on the elastic properties of Mg from first-principles calculations. Acta Mater. 2009;57:3876–84. https://doi.org/10.1016/j.actamat.2009.04.038.

    Article  Google Scholar 

  34. Zhang SC, Liu C, Liu S, Chang QM. Effects of temperature and strain rate on elastic modular of extruded AZ31 magnesium alloy. Light Alloy Fabr Technol. 2016;44:62–5. https://doi.org/10.13979/j.1007-7235.2016.04.012.

    Article  Google Scholar 

  35. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. https://doi.org/10.1006/JCPH.1995.1039.

    Article  MATH  Google Scholar 

  36. Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101:4177–90. https://doi.org/10.1063/1.467468.

    Article  Google Scholar 

  37. Luo SN, Germann TC, Tonks DL. Spall damage of copper under supported and decaying shock loading. J Appl Phys. 2009;106:1–7. https://doi.org/10.1063/1.3271414.

    Article  Google Scholar 

  38. Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem. 1987;91:4950–63. https://doi.org/10.1021/j100303a014.

    Article  Google Scholar 

  39. Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. J Geophys Res Atmos. 2010;119:2131–45. https://doi.org/10.1088/0965-0393/18/8/085001.

    Article  Google Scholar 

  40. Agarwal G, Dongare AM. Atomistic study of shock Hugoniot of single crystal Mg. J Appl Phys 2017;1–7. https://doi.org/10.1063/1.4971592

  41. Wen P, Demaske B, Spearot DE, Phillpot SR. Shock compression of Cu\(_{x}\)Zr\(_{100x}\) metallic glasses from molecular dynamics simulations. J Mater Sci. 2017;53:1–14. https://doi.org/10.1007/s10853-017-1666-5.

    Article  Google Scholar 

  42. Garkushin GV, Savinykh AS, Kanel GI. Response of magnesium single crystals to shock-wave loading at room and elevated temperatures. J Phys Conf. 2014;500:112027. https://doi.org/10.1088/1742-6596/500/11/112027.

    Article  Google Scholar 

  43. Zu Q, Guo YF, Xu S, Tang XZ, Wang YS. Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals. Acta Metall Sin. 2016;29:301–31. https://doi.org/10.1007/s40195-015-0353-2.

    Article  Google Scholar 

  44. Stukowski A, Bulatov V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng. 2012;20:85007. https://doi.org/10.1088/0965-0393/20/8/085007.

    Article  Google Scholar 

  45. Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng. 2010;18:2131–45. https://doi.org/10.1088/0965-0393/18/8/085001.

    Article  Google Scholar 

  46. Lilleodden ET, Nix WD. Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 2006;54:1583–93. https://doi.org/10.1016/j.biomaterials.2005.10.003.

    Article  Google Scholar 

  47. Holian BL, Lomdahl PS. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science. 1998;280:2085–8. https://doi.org/10.1126/science.280.5372.2085.

    Article  Google Scholar 

  48. Meyers MA, Marr LE, Lindholm US. Shock waves and high-strain-rate phenomena in metals. J Appl Mech. 1982;49:683. https://doi.org/10.1115/1.3162565.

    Article  Google Scholar 

Download references

Acknowledgements

This research are funded by the National Natural Science Foundation of China (11402183, 51604206 and 51974217), the Fundamental Research Funds for the Central Universities of China (WUT: 2017IA002) and National Defense Science and technology foundation strengthening program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Xu, S. & Liu, L. The Shock Response and Spall Mechanism of Mg–Al–Zn Alloy: Molecular Dynamics Study. Acta Mech. Solida Sin. 35, 495–503 (2022). https://doi.org/10.1007/s10338-021-00301-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00301-4

Keywords

Navigation