Skip to main content
Log in

Decomposition of \(\langle {c}+{a}\rangle \) Dislocations in Magnesium Alloys

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, molecular dynamics simulations are performed to investigate the decomposition of \(\langle c+a \rangle \) dislocations on both pyramidal-I and pyramidal-II planes. The pyramidal-I dislocations are decomposed into \(\langle c \rangle \) and \(\langle a \rangle \) dislocations under shear stress at 0–400 K, which all reside on the basal plane. At 500–700 K, the dislocations are transited onto the basal plane at zero stress, then decomposed into \(\langle c \rangle \) and \(\langle a \rangle \) dislocations under shear loading. In particular, at 700 K, the dislocation is possibly decomposed spontaneously at zero stress. For the pyramidal-II dislocations, the core is glissile below 400 K. At 500 K, the dislocation is transited onto the basal plane under shear loading. At 600–700 K, basal \(\langle c+a \rangle \) dislocation is formed at zero stress, but then decomposed under shear loading. The dislocation core energy is calculated to explain the observations. It is found that the energy of decomposed \(\langle c+a \rangle \) dislocation is high, the energy of pyramidal \(\langle c+a \rangle \) dislocation is intermediate, and the energy of basal \(\langle c+a \rangle \) dislocation is low. Our results provide new insights into the behaviors of pyramidal dislocations and temperature effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pollock TM. Materials science. Weight loss with magnesium alloys Science. 2010;328:986–7.

    Google Scholar 

  2. Yang Y, Xiong X, Chen J, Peng X, Chen D, Pan F. Research advances in magnesium and magnesium alloys worldwide in 2020. J Magn Alloys, 2021.

  3. Mises RV. Mechanik der plastischen Formänderung von Kristallen. Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik. 1928;8:161–85.

    Article  Google Scholar 

  4. Agnew SR, Brown DW, Tomé CN. Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Mater. 2006;54:4841–52.

    Article  Google Scholar 

  5. Sandlöbes S, Friák M, Zaefferer S, Dick A, Yi S, Letzig D, Pei Z, Zhu LF, Neugebauer J, Raabe D. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys. Acta Mater. 2012;60:3011–21.

    Article  Google Scholar 

  6. Agnew SR, Capolungo L, Calhoun CA. Connections between the basal I1 “growth” fault and \(<\)c\(+\)a\(>\) dislocations. Acta Mater. 2015; 82:255–65.

  7. Sandlobes S, Friak M, Kortekerzel S, Pei Z, Neugebauer J, Raabe D. A rare-earth free magnesium alloy with improved intrinsic ductility. Sci Rep. 2017;7:10458–10458.

    Article  Google Scholar 

  8. Sandlöbes S, Pei Z, Friák M, Zhu L-F, Wang F, Zaefferer S, Raabe D, Neugebauer J. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater. 2014;70:92–104.

    Article  Google Scholar 

  9. Seok M-Y, Gopalan H, Nandy S, Zaefferer S, Raabe D, Kirchlechner C, Dehm G. Microscale plastic anisotropy of basal and pyramidal I slip in pure magnesium tested in shear. Materialia, 2020;14.

  10. Sandlöbes S, Friák M, Neugebauer J, Raabe D. Basal and non-basal dislocation slip in Mg-Y. Mater Sci Eng: A. 2013;576:61–8.

    Article  Google Scholar 

  11. Chen Y, Hu G, Lan Y, Zhang K, Cai G. Constitutive modeling of slip, twinning and Detwinning for Mg alloy and inhomogeneous evolution of microstructure. Acta Mech Solida Sinica. 2018;31:493–511.

    Article  Google Scholar 

  12. Obara T, Yoshinga H, Morozumi S. \(\{ 1122\}\)\(<1123>\) Slip system in magnesium. Acta Metall. 1973;21:845–53.

    Article  Google Scholar 

  13. Fan H, El-Awady JA. Towards resolving the anonymity of pyramidal slip in magnesium. Mater Sci Eng: A. 2015;644:318–24.

    Article  Google Scholar 

  14. Xie KY, Alam Z, Caffee A, Hemker KJ. Pyramidal I slip in c-axis compressed Mg single crystals. Scripta Mater. 2016;112:75–8.

    Article  Google Scholar 

  15. Liu B, Liu F, Yang N, Zhai XB, Zhang L, Yang Y, Li B, Li J, Ma E, Nie JF. Large plasticity in magnesium mediated by pyramidal dislocations. Science. 2019;365:73–5.

    Article  Google Scholar 

  16. Yin DD, Boehlert CJ, Long LJ, Huang GH, Zhou H, Zheng J, Wang QD. Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg-Y sheets. Int J Plast. 2021;136.

  17. Geng J, Chisholm MF, Mishra RK, Kumar KS. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0 0 0 1] at room temperature. Philos Mag. 2015;95:3910–32.

    Article  Google Scholar 

  18. Ando S, Tsushida M, Kitahara H. Deformation behavior of magnesium single crystal in \(<\) c\(>\)-axis compression and \(<\) a\(>\)-axis tension. Mater Sci Forum. 2010;654–656:699–702

  19. Kitahara T, Ando S, Tsushida M, Kitahara H, Tonda H. Deformation behavior of magnesium single crystals in C-axis compression. Key Eng Mater. 2007;345–346:129–32.

    Article  Google Scholar 

  20. Byer CM, Li B, Cao B, Ramesh KT. Microcompression of single-crystal magnesium. Scripta Mater. 2010;62:536–9.

    Article  Google Scholar 

  21. Lilleodden E. Microcompression study of Mg (0001) single crystal. Scripta Mater. 2010;62:532–5.

    Article  Google Scholar 

  22. Tonda H, Ando S. Effect of temperature and shear direction on yield stress by \(\{11-22\}\)\(<\) -1-123 \(>\) slip in HCP metals. Metall Mater Trans Phys Metall Mater Sci. 2002;33:831–6.

    Article  Google Scholar 

  23. Ando S, Tonda H. Non-basal slip in magnesium-lithium alloy single crystals. Mater. Trans., JIM, 2000;41:1188–91.

  24. Aubry S, Rhee M, Hommes G, Bulatov VV, Arsenlis A. Dislocation dynamics in hexagonal close-packed crystals. J Mech Phys Solids. 2016;94:105–26.

    Article  MathSciNet  Google Scholar 

  25. Wu Z, Curtin WA. The origins of high hardening and low ductility in magnesium. Nature. 2015;526:62–7.

    Article  Google Scholar 

  26. Ahmad R, Yin B, Wu Z, Curtin WA. Designing high ductility in magnesium alloys. Acta Mater. 2019;172:161–84.

    Article  Google Scholar 

  27. Xie Q, Zhu Z, Kang G. Crystal-plasticity-based dynamic constitutive model of AZ31B magnesium alloy at elevated temperature and with explicit plastic-strain-rate control. Acta Mech Solida Sinica. 2020;33:31–50.

    Article  Google Scholar 

  28. Mathis K, Nyilas K, Axt A, Dragomircernatescu I, Ungar T, Lukac P. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Mater. 2004;52:2889–94.

    Article  Google Scholar 

  29. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    Article  Google Scholar 

  30. Kim K-H, Jeon JB, Lee B-J. Modified embedded-atom method interatomic potentials for Mg-X (X\(=\)Y, Sn, Ca) binary systems. Calphad. 2015;48:27–34.

    Article  Google Scholar 

  31. Ghazisaeidi M, Hector LG, Curtin WA. First-principles core structures of \(<\)c\(+\)a\(>\) edge and screw dislocations in Mg. Scripta Mater. 2014;75:42–5.

    Article  Google Scholar 

  32. Stukowski A, Albe K. Dislocation detection algorithm for atomistic simulations. Model Simul Mater Sci Eng. 2010;18: 025016.

    Article  Google Scholar 

  33. Shuang F, Xiao P, Bai Y. Efficient and reliable nanoindentation simulation by dislocation loop erasing method. Acta Mech Solida Sinica. 2020;33:586–99.

    Article  Google Scholar 

  34. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng. 2009;18: 015012.

    Article  Google Scholar 

  35. Tang Y, El-Awady JA. Highly anisotropic slip-behavior of pyramidal I \(<\) c\(+\)a \(>\) dislocations in hexagonal close-packed magnesium. Mater Sci Eng: A. 2014;618:424–32.

    Article  Google Scholar 

  36. Zhu Y, Li Z, Huang M, Liu Y. Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins. Int J Plast. 2015;72:168–84.

    Article  Google Scholar 

  37. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–68.

    Article  Google Scholar 

  38. Fan H, El-Awady JA, Wang Q. Towards further understanding of stacking fault tetrahedron absorption and defect-free channels: a molecular dynamics study. J Nucl Mater. 2015;458:176–86.

    Article  Google Scholar 

  39. Fan H, Tang J, Tian X, Wang Q, Tian X, El-Awady JA. Core structures and mobility of \(\langle c \rangle \) dislocations in magnesium. Scripta Mater. 2017;135:37–40.

    Article  Google Scholar 

  40. Fan H, Wang Q, Tian X, El-Awady JA. Temperature effects on the mobility of pyramidal \(<\) c \(+\) a \(>\) dislocations in magnesium. Scripta Mater. 2017;127:68–71.

    Article  Google Scholar 

  41. Jang H-S, Seol D, Lee B-J. Modified embedded-atom method interatomic potentials for Mg–Al–Ca and Mg–Al–Zn ternary systems. J Magn Alloys; 2020.

  42. Kim K-H, Lee B-J. Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems. Calphad. 2017;57:55–61.

    Article  Google Scholar 

  43. Kim Y-M, Jung I-H, Lee B-J. Atomistic modeling of pure Li and Mg-Li system. Model Simul Mater Sci Eng. 2012;20: 035005.

    Article  Google Scholar 

  44. Wu Z, Curtin WA. Intrinsic structural transitions of the pyramidal I \(<\)c\(+\)a\(>\) dislocation in magnesium. Scripta Mater. 2016;116:104–7.

    Article  Google Scholar 

  45. Byer CM, Ramesh KT. Effects of the initial dislocation density on size effects in single-crystal magnesium. Acta Mater. 2013;61:3808–18.

    Article  Google Scholar 

  46. Li Z, Tian X, Tang J, Wang Q, Jiang W, Fan H. Molecular dynamics simulations on the dislocation interactions in magnesium. Comput Mater Sci. 2021;197: 110597.

    Article  Google Scholar 

  47. Kim G S. Small volume investigation of slip and twinning in magnesium single crystals. Ph.D. thesis Universite de Grenoble, 2011.

  48. Aitken ZH, Fan H, El-Awady JA, Greer JR. The effect of size, orientation and alloying on the deformation of AZ31 nanopillars. J Mech Phys Solids. 2015;76:208–23.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from National Natural Science Foundation of China (12072211) and Sichuan Province Science and Technology Project (2020JDJQ0029) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tang, J., Tian, X. et al. Decomposition of \(\langle {c}+{a}\rangle \) Dislocations in Magnesium Alloys. Acta Mech. Solida Sin. 35, 461–469 (2022). https://doi.org/10.1007/s10338-021-00288-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00288-y

Keywords

Navigation