Skip to main content
Log in

Free Vibration of Elastically Constrained Single-Layered \(\hbox {MoS}_{2}\)

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Free vibration of elastically constrained rectangular single-layered \(\hbox {MoS}_{\mathrm {2}}\) is investigated by using a nonlocal Kirchhoff plate model with an initial stress. The variationally consistent elastically constrained boundary conditions are obtained by using the weighted residual method, while the governing equations of the nonlocal Kirchhoff plate model are known. A modified Fourier series method is applied to study the vibrational behaviors of elastically constrained nonlocal Kirchhoff plate models. The convergence and reliability of the modified Fourier series method is verified via comparison with the finite element method. A comprehensive parametric study is performed to show the influences of the boundary elastic constant, nonlocal parameter and initial stress on the vibrational behaviors of single-layered \(\hbox {MoS}_{\mathrm {2}}\). The results should be good for the design of nanoresonators .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Castellanos-Gomez A, Van Leeuwen R, Buscema M, Van Der Zant HSJ, Steele GA, Venstra WJ. Single-layer \(\text{ MoS}_{\rm 2}\) mechanical resonators. Adv Mater. 2013;25:6719–23.

    Article  Google Scholar 

  2. Lee J, Krupcale MJ, Feng PXL. Effects of \(\upgamma \)-ray radiation on two-dimensional molybdenum disulfide (\(\text{ MoS}_{\rm 2})\) nanomechanical resonators. Appl Phys Lett. 2016;108:023106.

    Article  Google Scholar 

  3. Jiang JN, Wang LF, Zhang YQ. Free vibration of single-layered \(\text{ MoS}_{\rm 2}\) suspended over a circular hole. J Appl Phys. 2019;126:135106.

    Article  Google Scholar 

  4. Liu RM, Wang LF. Nonlinear forced vibration of bilayer van der Waals materials drum resonator. J Appl Phys. 2020;128:145105.

    Article  Google Scholar 

  5. Lee J, Wang ZH, He KL, Shan J, Feng PXL. High frequency \(\text{ MoS}_{\rm 2}\) nanomechanical resonators. ACS Nano. 2013;7(7):6086–91.

    Article  Google Scholar 

  6. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–10.

    Article  Google Scholar 

  7. Wang Q, Varadan VK. Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct. 2006;15:659–66.

    Article  Google Scholar 

  8. Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci. 2007;45:288–307.

    Article  Google Scholar 

  9. Eltaher MA, Khater ME, Emam SA. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Model. 2016;40:4109–28.

    Article  MathSciNet  Google Scholar 

  10. Wu CP, Yu JJ. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Arch Appl Mech. 2019;89:1761–92.

  11. Murmu T, Pradhan SC. Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity. J Appl Phys. 2009;106:104301.

    Article  Google Scholar 

  12. Shen ZB, Tang HL, Li DK, Tang GJ. Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput Mater Sci. 2012;61:200–5.

    Article  Google Scholar 

  13. Sari MS, Kou WA. Vibration analysis of non-uniform orthotropic Kirchhoff plates resting on elastic foundation based on nonlocal elasticity theory. Int J Mech Sci. 2016;114:1–11.

    Article  Google Scholar 

  14. Karlicic D, Cajic M, Adhikari S, Kozic P, Murmu T. Vibrating nonlocal multi-nanoplate system under inplane magnetic field. Eur J Mech A Solid. 2017;64:29–45.

    Article  MathSciNet  Google Scholar 

  15. Despotovic N. Stability and vibration of a nanoplate under body force using nonlocal elasticity theory. Acta Mech. 2018;229:273–84.

    Article  MathSciNet  Google Scholar 

  16. Jiang JN, Wang LF, Zhang YQ. Vibration of single-walled carbon nanotubes with elastic boundary conditions. Int J Mech Sci. 2017;122:156–66.

    Article  Google Scholar 

  17. Li WL, Zhang XF, Du JT, Liu ZG. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. J Sound Vib. 2009;321:254–69.

    Article  Google Scholar 

  18. Shi XJ, Shi DY, Li WL, Wang QS. A unified method for free vibration analysis of circular, annular and sector plates with arbitrary boundary conditions. J Vib Control. 2016;22(2):442–56.

    Article  Google Scholar 

  19. Bao SY, Wang SD. A unified procedure for free transverse vibration of rectangular and annular sectorial plates. Arch Appl Mech. 2019;89:1485–99.

    Article  Google Scholar 

  20. Zhang W, Fang Z, Yang XD, Liang F. A series solution for free vibration of moderately thick cylindrical shell with general boundary conditions. Eng Struct. 2018;165:422–40.

    Article  Google Scholar 

  21. Su Z, Jin GY, Wang LF, Wang D. Thermo-mechanical vibration analysis of size-dependent functionally graded micro-beams with general boundary conditions. Int J Appl Mech. 2018;10:1850088.

    Article  Google Scholar 

  22. Rosa MAD, Lippiello M. Nonlocal frequency analysis of embedded single-walled carbon nanotube using the differential quadrature method. Compos Part B. 2016;84:41–51.

    Article  Google Scholar 

  23. Wang LF, He XQ, Sun YZ, Liew KM. A mesh-free vibration analysis of strain gradient nano-beams. Eng Anal Bound Elem. 2017;84:231–6.

    Article  MathSciNet  Google Scholar 

  24. Jiang JN, Wang LF. Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions. Acta Mech Solida Sin. 2017;30:474–83.

    Article  Google Scholar 

  25. Zhang Z, Challamel N, Wang CM. Eringen’s small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model. J Appl Phys. 2013;114:114901.

  26. Xu XJ, Deng ZC, Zhang K, Xu W. Observations of the softening phenomena in the nonlocal cantilever beams. Compos Struct. 2016;145:43–57.

    Article  Google Scholar 

  27. Xiong S, Cao GX. Bending response of single layer \(\text{ MoS}_{\rm 2}\). Nanotechnology. 2016;27:105701.

    Article  Google Scholar 

  28. Jiang SL, Li WL, Yang TJ, Du JT. Free vibration analysis of doubly curved shallow shells reinforced by any number of beams with arbitrary lengths. J Vib Control. 2016;22(2):570–84.

    Article  MathSciNet  Google Scholar 

  29. Xu W, Wang LF, Jiang JN. Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int J Comput Methods. 2016;3:1650011.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0037), State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) under Grants MCMS-E-0120G01, National Natural Science Foundation of China under Grants Nos. 11925205 and 51921003, and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingnong Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Wang, L. Free Vibration of Elastically Constrained Single-Layered \(\hbox {MoS}_{2}\). Acta Mech. Solida Sin. 35, 421–433 (2022). https://doi.org/10.1007/s10338-021-00282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00282-4

Keywords

Navigation