Skip to main content
Log in

A Dislocation-based Model for the Dynamics of Sliding Precursors

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The onset of dynamic friction plays an important role in the study of sliding interfaces. Previously, the sliding precursors in the form of crack-like defects have been detected in experiments and their strain fields have been measured to be comparable to those of moving cracks. In the present work, we considered the dynamics of sliding precursors by solving the elastic problem due to a moving dislocation in a half-plane and the transient emission of a dislocation at the edge. It has been found that both the strain field of a moving dislocation and the spatiotemporal evolution agree well with those of a sliding precursor detected in experiments. The results may cast new light to the dynamics of sliding onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rubinstein SM, Cohen G, Fineberg J. Detachment fronts and the onset of dynamic friction. Nature. 2004;430:1001–5.

    Article  Google Scholar 

  2. Rubinstein SM, Cohen G, Fineberg J. Dynamics of precursors to frictional sliding. Phys Rev Lett. 2007;98:226103.

    Article  Google Scholar 

  3. Svetlizky I, Fineberg J. Classical shear cracks drive the onset of dry frictional motion. Nature. 2014;509:205.

    Article  Google Scholar 

  4. Ciavarella M. Transition from stick to slip in Hertzian contact with Griffith friction: The Cattaneo-Mindlin problem revisited. J Mech Phys Solids. 2015;84:313–24.

    Article  MathSciNet  Google Scholar 

  5. Papangelo A, Ciavarella M. Cattaneo-Mindlin plane problem with Griffith friction. Wear. 2015;342–343:398–407.

    Article  Google Scholar 

  6. Tromborg J, Scheibert J, Amundsen DS, et al. Transition from static to kinetic friction: insights from a 2D model. Phys Rev Lett. 2011;107:074301.

    Article  Google Scholar 

  7. Capozza R, Rubinstein SM, Barel I, et al. Stabilizing stick-slip friction. Phys Rev Lett. 2011;107:024301.

    Article  Google Scholar 

  8. Capozza R, Urbakh M. Static friction and the dynamics of interfacial rupture. Phys Rev B. 2012;86:085430.

    Article  Google Scholar 

  9. Bar Sinai Y, Brener EA, Bouchbinder E. Slow rupture of frictional interfaces. Geophys Res Lett. 2012;39:L03308.

    Article  Google Scholar 

  10. Bar-Sinai Y, Spatschek R, Brener EA, et al. Instabilities at frictional interfaces: creep patches, nucleation, and rupture fronts. Phys Rev E. 2013;88:060403.

    Article  Google Scholar 

  11. Tromborg JK, Sveinsson HA, Scheibert J, et al. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces. Proc Natl Acad Sci USA. 2014;111:8764–9.

    Article  Google Scholar 

  12. Papangelo A, Ciavarella M. Some observations on Bar Sinai, Brener and Bouchbinder (BSBB) model for friction. Meccanica. 2016;52(4–5):1239–46.

    MathSciNet  MATH  Google Scholar 

  13. Ben-David O, Fineberg J. Static friction coefficient is not a material constant. Phys Rev Lett. 2011;106:254301.

    Article  Google Scholar 

  14. Ben-David O, Cohen G, Fineberg J. The dynamics of the onset of frictional slip. Science. 2010;330:211–4.

    Article  Google Scholar 

  15. Muser MH, Wenning L, Robbins MO. Simple microscopic theory of Amontons’s laws for static friction. Phys Rev Lett. 2001;86:1295–8.

    Article  Google Scholar 

  16. Patil DB, Eriten M. Effects of interfacial strength and roughness on the static friction coefficient. Tribol Lett. 2014;56:355–74.

    Article  Google Scholar 

  17. Cammarata A, Nicoloni P, Simonovic K. Atomic-scale design of friction and energy dissipation. Phys Rev B. 2019;99:094309.

    Article  Google Scholar 

  18. Bowden FP, Tabor D. The Friction and Lubrication of Solids. New York: Oxford Univ. Press; 2001.

    MATH  Google Scholar 

  19. Persson BNJ. Role of frictional heating in rubber friction. Tribol Lett. 2014;56:77–92.

    Article  Google Scholar 

  20. Solid Mollon G. Contacts flow regimes within dry sliding. Tribol Lett. 2019;67:120.

    Article  Google Scholar 

  21. Heaton TH. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys Earth Planet Inter. 1990;64:1–20.

    Article  Google Scholar 

  22. Cochard A, Rice JR. Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse response. J Geophys Res-Sol Earth. 2000;105:25891–907.

    Article  Google Scholar 

  23. Ben-Zion Y. Dynamic ruptures in recent models of earthquake faults. J Mech Phys Solids. 2011;49:2209–44.

    Article  MathSciNet  MATH  Google Scholar 

  24. Andrews DJ, BenZion Y. Wrinkle-like slip pulse on a fault between different materials. J Geophys Res B. 1997;102:553–71.

    Article  Google Scholar 

  25. Koge H, Fujiwara T, Kodaira S. Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: an inference from topographic variation. Earth Planets Space. 2014;66:153.

    Article  Google Scholar 

  26. Liu C, Bizzarri A, Das S. Progression of spontaneous in-plane shear faults from sub-Rayleigh to compressional wave rupture speeds. J GEOPHYS RES-SOL EA. 2014;119:8331–45.

    Article  Google Scholar 

  27. Blank DG, Morgan JK. Precursory Stress changes and fault dilation lead to fault rupture: Insights from discrete element simulations. Geophys Res Lett. 2019;46:3180–31883.

    Article  Google Scholar 

  28. Rosakis AJ, Samudrala O, Coker D. Cracks faster than the shear wave speed. Science. 1999;284:1337–40.

    Article  Google Scholar 

  29. Xia K, Rosakis AJ, Kanamori H. Laboratory earthquakes: the sub-Raleigh-to-supershear rupture transition. Science. 2004;303:1661–859.

    Article  Google Scholar 

  30. Svetlizky I, Pino Munoz D, Fineberg J. Properties of the shear stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip. Proc Natl Acad Sci USA. 2016;113:542–7.

    Article  Google Scholar 

  31. Svetlizky I, Kammer DS, Fineberg J. Brittle fracture theory predicts the equation of motion of frictional rupture fronts. Phys Rev Lett. 2017;118:125501.

    Article  Google Scholar 

  32. Steketee JA. Some geophysical applications of the elasticity theory of dislocations. Can J Phys. 1958;36(9):1168–98.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang YS, Gross D, Hang GY. Transient dislocation emission from a crack tip under dynamic mode III loading. Arch Appl Mech. 2001;71:567–76.

    Article  MATH  Google Scholar 

  34. Bhushan B, Nosonovsky M. Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip). Acta Mater. 2003;51:4331–45.

    Article  Google Scholar 

  35. Merkle AP, Marks LD. A predictive analytical friction model from basic theories of interfaces, contacts and dislocations. Tribol Lett. 2007;26:73–84.

    Article  Google Scholar 

  36. Liao Y, Marks LD. Modeling of thermal-assisted dislocation friction. Tribol Lett. 2010;37:283–8.

    Article  Google Scholar 

  37. Sun F, Giessen E, Nicola L. Dry frictional contact of metal asperities: a dislocation dynamics analysis. Acta Mater. 2016;109:162–9.

    Article  Google Scholar 

  38. Achenbach JD. Wave propagation in elastic solids. Amsterdam: North-Holland/Elsevier Science Ltd; 1973.

    MATH  Google Scholar 

  39. Ben-David O, Rubinstein SM, Fineberg J. Slip-stick and the evolution of frictional strength. Nature. 2010;463:76–9.

    Article  Google Scholar 

  40. Kendall K. Preparation and properties of rubber dislocations. Nature. 1976;2(61):35–6.

    Article  Google Scholar 

  41. Hirth JP, Lothe J. Theory of Dislocations. \({2}^{\rm nd\it }\) ed. New York: Wiley-Interscience; 1953.

  42. Huang GY, Zhou YN. A mechanical model for the detachment of barnacles under tangential forces. Proc Mater Sci. 2014;3:799–804.

    Article  Google Scholar 

  43. Huang GY, Wang YS, Gross D. Transient dislocation emission from a crack tip under dynamic mode II loading. Z angew Math Phys. 2002;53:839–54.

    Article  MathSciNet  MATH  Google Scholar 

  44. Deshpande VS, Needleman A, Van der Giessen E. Discrete dislocation plasticity analysis of static friction. Acta Mater. 2004;52:3135–49.

    Article  Google Scholar 

  45. Antoni Nicolas. A further analysis on the analogy between friction and plasticity in Solid Mechanics. Int J Eng Sci. 2017;121:34–51.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support by the National Natural Science Foundation of China under Grant Nos. 1177220, 12021002 and 11572216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganyun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, G. A Dislocation-based Model for the Dynamics of Sliding Precursors. Acta Mech. Solida Sin. 34, 624–631 (2021). https://doi.org/10.1007/s10338-021-00237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00237-9

Keywords

Navigation