Skip to main content
Log in

Nonlinear Vibration Analyses of Cylindrical Shells Composed of Hyperelastic Materials

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The nonlinear vibration problem is studied for a thin-walled rubber cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a radial harmonic excitation. With the Kirchhoff–Love hypothesis, Donnell’s nonlinear shallow shell theory, hyperelastic constitutive relation, Lagrange equations and small strain hypothesis, a system of nonlinear differential equations describing the large-deflection vibration of the shell is derived. First, the natural frequencies of radial, circumferential and axial vibrations are studied. Then, based on the bifurcation diagrams and the Poincaré sections, the nonlinear behaviors describing the radial vibration of the shell are illustrated. Examining the influences of structural and material parameters on radial vibration of the shell shows that the vibration modes are highly sensitive to the thickness–radius ratio when the ratio is less than a certain critical value. Moreover, in terms of the results of multimodal expansion, it is found that the response of the shell to radial motion is more regular than that without considering the coupling between modes, while there are more phenomena for the uncoupled case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lacarbonara W. Nonlinear structural mechanics nonlinear structural mechanics: theory, dynamical phenomena and modeling. Berlin: Springer; 2013.

    Book  MATH  Google Scholar 

  2. Wang Y, Du W, Huang X, Xue S. Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid. Acta Mech Solida Sin. 2015;28:706–21.

    Article  Google Scholar 

  3. Hao YX, Chen LH, Zhang W, Zhang W. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J Sound Vib. 2008;312:862–92.

    Article  Google Scholar 

  4. Yang N, Chen L, Yi H, Liu Y. A unified solution for the free vibration analysis of simply supported cylindrical shells with general structural stress distributions. Acta Mech Solida Sin. 2016;29:577–95.

    Article  Google Scholar 

  5. Li SB, Zhang W. Global bifurcations and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance. Appl Math Mech. 2012;33:1115–28.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bich DH, Nguyen NX. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J Sound Vib. 2012;331:5488–501.

    Article  Google Scholar 

  7. Sofiyev AH, Hui D, Haciyev VC, Erdem H, Yuan GQ, Schnack E, Guldal V. The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory. Compos Part B Eng. 2017;116:170–85.

    Article  Google Scholar 

  8. Zhu CS, Fang XQ, Liu JX, Li HY. Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur J Mech. 2017;66:423–32.

    Article  MathSciNet  MATH  Google Scholar 

  9. Amabili M, Balasubramanian P, Ferrari G. Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: experiments and simulations. J Sound Vib. 2016;381:220–45.

    Article  Google Scholar 

  10. Yamaguchi T, Nagai KI. Chaotic vibrations of a cylindrical shell-panel with an in-plane elastic-support at boundary. Nonlinear Dyn. 1997;13:259–77.

    Article  MATH  Google Scholar 

  11. Han Q, Hu H, Yang G. A study of chaotic motion in elastic cylindrical shells. Eur J Mech. 1999;18:351–60.

    Article  MathSciNet  MATH  Google Scholar 

  12. Krysko AV, Awrejcewicz J, Kuznetsova ES, Krysko VA. Chaotic vibrations of closed cylindrical shells in a temperature field. Int J Bifurc Chaos. 2008;18:1515–29.

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang W, Liu T, Xi A, Wang YN. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J Sound Vib. 2018;423:65–99.

    Article  Google Scholar 

  14. Li ZN, Hao YX, Zhang W, Zhang JH. Nonlinear transient response of functionally graded material sandwich doubly curved shallow shell using new displacement field. Acta Mech Solida Sin. 2018;31:108–26.

    Article  Google Scholar 

  15. Amabili M, Sarkar A, Païdoussis MP. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method. J Sound Vib. 2006;290:736–62.

    Article  Google Scholar 

  16. Amabili M. Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory. Eur J Mech. 2018;68:75–87.

    Article  MathSciNet  MATH  Google Scholar 

  17. Krysko VA, Awrejcewicz J, Saveleva NE. Stability, bifurcation and chaos of closed flexible cylindrical shells. Int J Mech Sci. 2008;50:247–74.

    Article  MATH  Google Scholar 

  18. Breslavsky ID, Amabili M. Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation. Nonlinear Dyn. 2018;93:53–62.

    Article  Google Scholar 

  19. Du C, Li Y, Jin X. Nonlinear forced vibration of functionally graded cylindrical thin shells. Thin-Walled Struct. 2014;78:26–36.

    Article  Google Scholar 

  20. Aranda-Iglesias D, Rodríguez-Martínez JA, Rubin MB. Nonlinear axisymmetric vibrations of a hyperelastic orthotropic cylinder. Int J Nonlinear Mech. 2018;99:131–43.

    Article  Google Scholar 

  21. Gonçalves PB, Soares RM, Pamplona D. Nonlinear vibrations of a radially stretched circular hyperelastic membrane. J Sound Vib. 2009;327:231–48.

    Article  Google Scholar 

  22. Breslavsky ID, Amabili M, Legrand M. Nonlinear vibrations of thin hyperelastic plates. J Sound Vib. 2014;333:4668–81.

    Article  Google Scholar 

  23. Shahinpoor M, Nowinski JL. Exact solution to the problem of forced large amplitude radial oscillations of a thin hyperelastic tube. Int J Nonlinear Mech. 1971;6:193–207.

    Article  MATH  Google Scholar 

  24. Wang R, Zhang WZ, Zhao ZT, Zhang HW, Yuan XG. Radially and axially symmetric motions of a class of transversely isotropic compressible hyperelastic cylindrical tubes. Nonlinear Dyn. 2017;90:2481–94.

    Article  Google Scholar 

  25. Breslavsky ID, Amabili M, Legrand M. Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J Appl Mech. 2016;83:051002.

    Article  Google Scholar 

  26. Ogden RW. Non-linear elastic deformations., Engineering analysisChichester: Ellis Horwood Ltd.; 1984.

    MATH  Google Scholar 

  27. Donnell LH. A new theory for the buckling of thin cylinders under axial compression and bending. Trans Am Soc Mech. 1934;56(11):795–806.

    Google Scholar 

  28. Amabili M. Nonlinear vibrations of circular cylindrical panels. J Sound Vib. 2005;281:509–35.

    Article  Google Scholar 

  29. Amabili M. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J Sound Vib. 2003;264:1091–125.

    Article  Google Scholar 

  30. Amabili M, Pellicano F, Paidoussis MP. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: truncation effect without flow and experiments. J Sound Vib. 2000;237:617–40.

    Article  Google Scholar 

  31. Li TY, Yorke JA. Period three implies chaos. Am Math Mon. 1975;82:985–92.

    Article  MathSciNet  MATH  Google Scholar 

  32. Amabili M. Nonlinear mechanics of shells and plates in composite., Soft and biological materialsCambridge: Cambridge University Press; 2018.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11672069, 11702059, 11872145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegang Yuan or Hu Ding.

Appendixes

Appendixes

Elements of the mass matrix:

$$\begin{aligned} {{\varvec{M}}}= & {} \left[ {{\begin{array}{lll} {M_{11} }&{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \ddots &{}\quad \vdots \\ 0&{}\quad \cdots &{}\quad {M_{99} } \\ \end{array} }} \right] \nonumber \\ M_{11}= & {} M_{44} =\frac{\pi \rho lRh}{2}, M_{22} =M_{33} =M_{55} =M_{66} =\pi \rho lRh, M_{77} =\frac{\pi \rho h^{3}}{24lR}\left( {n^{2}l^{2}+\pi ^{2}R^{2}} \right) +\frac{\pi \rho lRh}{2},\nonumber \\ M_{88}= & {} \frac{\pi \rho hR}{12l}\left( {12l^{2}+\pi ^{2}h^{2}} \right) , M_{99} =\frac{\pi \rho hR}{4l}\left( {4l^{2}+3\pi ^{2}h^{2}} \right) \end{aligned}$$
(A1)

Elements of the linear stiffness matrix:

$$\begin{aligned} {{\varvec{K}}}= & {} \left[ {{\begin{array}{lll} {K_{11} }&{}\quad \cdots &{}\quad {K_{19} } \\ \vdots &{}\quad \ddots &{}\quad \vdots \\ {K_{91} }&{}\quad \cdots &{}\quad {K_{99} } \\ \end{array} }} \right] \nonumber \\ K_{11}= & {} \frac{\pi n^{2}lh}{2R}\left( {\mu _1 -4\mu _2 } \right) +\frac{2\pi ^{3}Rh}{l}\left( {\mu _1 -\mu _2 } \right) , K_{14} =K_{41} =-\pi ^{2}nh\left( {\mu _1 -\mu _2 } \right) -\frac{\pi ^{2}nh}{2}\left( {\mu _1 -4\mu _2 } \right) ,\nonumber \\ K_{17}= & {} K_{71} =-\pi ^{2}h\left( {\mu _1 -\mu _2 } \right) , K_{12} =K_{13} =K_{15} =K_{16} =K_{18} =K_{19} =0,\nonumber \\ K_{22}= & {} \frac{4\pi ^{3}Rh}{l}\left( {\mu _1 -\mu _2 } \right) , K_{28} =K_{82} =-2\pi ^{2}h\left( {\mu _1 -\mu _2 } \right) ,\nonumber \\ K_{21}= & {} K_{23} =K_{24} =K_{25} =K_{26} =K_{27} =K_{29} =0, K_{33} =\frac{36\pi ^{3}Rh}{l}\left( {\mu _1 -\mu _2 } \right) ,\nonumber \\ K_{39}= & {} K_{93} =-6\pi ^{2}h\left( {\mu _1 -\mu _2 } \right) , K_{31} =K_{32} =K_{34} =K_{35} =K_{36} =K_{37} =K_{38} =0,\nonumber \\ K_{44}= & {} \frac{2\pi n^{2}lh}{R}\left( {\mu _1 -\mu _2 } \right) +\frac{\pi ^{3}Rh}{l}\left( {\mu _1 -4\mu _2 } \right) , K_{47} =K_{74} =\frac{2\pi nlh}{R}\left( {\mu _1 -\mu _2 } \right) ,\nonumber \\ K_{42}= & {} K_{43} =K_{45} =K_{46} =K_{48} =K_{49} =0, K_{55} =\frac{\pi ^{3}Rh}{l}\left( {\mu _1 -4\mu _2 } \right) ,\nonumber \\ K_{51}= & {} K_{52} =K_{53} =K_{54} =K_{56} =K_{57} =K_{58} =K_{59} =0, K_{66} =\frac{9\pi ^{3}Rh}{l}\left( {\mu _1 -4\mu _2 } \right) ,\nonumber \\ K_{61}= & {} K_{62} =K_{63} =K_{64} =K_{65} =K_{67} =K_{68} =K_{69} =0,\nonumber \\ K_{77}= & {} \left( {\frac{2\pi lh}{R}+\frac{\pi n^{4}lh^{3}}{6R^{3}}+\frac{\pi ^{5}Rh^{3}}{6l^{3}}+\frac{\pi ^{3}n^{2}h^{3}}{6lR}} \right) \left( {\mu _1 -\mu _2 } \right) +\frac{\pi ^{3}n^{2}h^{3}}{6lR}\left( {\mu _1 -4\mu _2 } \right) ,\nonumber \\ K_{72}= & {} K_{73} =K_{75} =K_{76} =K_{78} =K_{79} =0, K_{88} =\left( {\frac{4\pi lh}{R}+\frac{\pi ^{5}Rh^{3}}{3l^{3}}} \right) \left( {\mu _1 -\mu _2 } \right) ,\nonumber \\ K_{81}= & {} K_{83} =K_{84} =K_{85} =K_{86} =K_{87} =0, K_{99} =\left( {\frac{4\pi lh}{R}+\frac{27\pi ^{5}Rh^{3}}{l^{3}}} \right) \left( {\mu _1 -\mu _2 } \right) ,\nonumber \\ K_{91}= & {} K_{92} =K_{94} =K_{95} =K_{96} =K_{97} =K_{98} =0. \end{aligned}$$
(A2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, J., Yuan, X. et al. Nonlinear Vibration Analyses of Cylindrical Shells Composed of Hyperelastic Materials. Acta Mech. Solida Sin. 32, 463–482 (2019). https://doi.org/10.1007/s10338-019-00114-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00114-6

Keywords

Navigation