Skip to main content
Log in

Developing an Instantaneous Response Surface Method t-IRS for Time-Dependent Reliability Analysis

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the time-dependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the t-IRS method for time-dependent reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Madsen HO, Krenk S, Lind NC. Methods of structural safety. Englewood Cliffs: Prentice-Hall; 1986.

    Google Scholar 

  2. Hasofer AM, Lind NC. Exact and invariant second-moment code format. J Eng Mech Div. 1974;100:111–21.

    Google Scholar 

  3. Rackwitz R, Flessler B. Structural reliability under combined random load sequences. Comput Struct. 1978;9:489–94.

    Article  MATH  Google Scholar 

  4. Fishman GS. Monte Carlo: concepts, algorithms and applications. New York: Springer; 1996.

    Book  MATH  Google Scholar 

  5. Sudret B. Meta-models for structural reliability and uncertainty quantification. In: Asian–Pacific symposium on structural reliability and its applications, Singapore; 2012.

  6. Faravelli L. Response-surface approach for reliability analysis. J Eng Mech. 1989;115:2763–81.

    Article  Google Scholar 

  7. Crestaux T, Maıtre OL, Martinez JM. Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf. 2009;94:1161–72.

    Article  Google Scholar 

  8. Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf. 2008;93:964–79.

    Article  Google Scholar 

  9. Bourinet JM, Deheeger F, Lemaire M. Assessing small failure probabilities by combined subset simulation and support vector machines. Struct Saf. 2011;33:343–53.

    Article  Google Scholar 

  10. Hurtado JE, Alvarez DA. Neural-network-based reliability analysis: a comparative study. Comput Method Appl M. 2001;191:113–32.

    Article  MATH  Google Scholar 

  11. Huang X, Chen J, Zhu H. Assessing small failure probabilities by AK-SS: an active learning method combining kriging and subset simulation. Struct Saf. 2016;59:86–95.

    Article  Google Scholar 

  12. Wang Z, Wang P. A maximum confidence enhancement based sequential sampling scheme for simulation-based design. J Mech Des. 2014;136:021006.

    Article  Google Scholar 

  13. Miller RA. Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Tech. 1997;6:35–42.

    Article  Google Scholar 

  14. Ditlevsen O. Stochastic model for joint wave and wind loads on offshore structures. Struct Saf. 2002;24:139–63.

    Article  Google Scholar 

  15. Pindoriya NM, Jirutitijaroen P, Srinivasan D, Singh C. Composite reliability evaluation using Monte Carlo simulation and least squares support vector classifier. IEEE T Power Syst. 2011;26:2483–90.

    Article  Google Scholar 

  16. Rice SO. Mathematical analysis of random noise. Bell Syst Tech J. 1944;23:282–332.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang Z, Chen W. Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation. Struct Saf. 2016;64:76–86.

    Article  Google Scholar 

  18. Engelung S, Rackwitz R, Lange C. Approximations of first passage times for differentiable processes based on higher order threshold crossings. Probab Eng Mech. 1995;10:53–60.

    Article  Google Scholar 

  19. Rackwitz R. Computational techniques in stationary and non-stationary load combination—a review and some extensions. J Struct Eng. 1998;25:1–20.

    Google Scholar 

  20. Breitung K. Asymptotic approximations for the crossing rates of poisson square waves. In: Proceedings of the conference on extreme value theory and applications, Gaithersburg. NIST Special Publication 866. 1993;3:75–80.

  21. Hagen O, Tvedt L. Vector process out-crossing as parallel system sensitivity measure. J Eng Mech. 1991;121:2201–10.

    Article  Google Scholar 

  22. Andrieu-Renaud C, Sudret B, Lemaire M. The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf. 2004;84:75–86.

    Article  Google Scholar 

  23. Sudret B. Analytical derivation of the out-crossing rate in time-variant reliability problems. Struct Infrastruct Eng. 2008;4:353–62.

    Article  Google Scholar 

  24. Zhang J, Du X. Time-dependent reliability analysis for function generator mechanisms. J Mech Des. 2011;133:031005.

    Article  Google Scholar 

  25. Son YK, Savage GJ. Set theoretic formulation of performance reliability of multiple response time-variant systems due to degradations in system components. Qual Reliab Eng Int. 2007;23:171–88.

    Article  Google Scholar 

  26. Mejri M, Cazuguel M, Cognard JY. A time-variant reliability approach for ageing marine structures with non-linear behaviour. Comput Struct. 2011;89:1743–53.

    Article  Google Scholar 

  27. Hu Z, Du X. Time-dependent reliability analysis with joint upcrossing rates. Struct Multidiscip O. 2013;48:893–907.

    Article  MathSciNet  Google Scholar 

  28. Lutes LD, Sarkani S. Reliability analysis of systems subject to first-passage failure. NASA Technical Report No. NASA/CR-2009-215782; 2009.

  29. Breitung K. Asymptotic crossing rates for stationary Gaussian vector processes. Stoch Process Appl. 1988;29:195–207.

    Article  MathSciNet  MATH  Google Scholar 

  30. Singh A, Mourelatos ZP, Li J. Design for lifecycle cost using time-dependent reliability. J Mech Des. 2010;132:1105–19.

    Article  Google Scholar 

  31. Wang Z, Wang P. A new approach for reliability analysis with time-variant performance characteristics. Reliab Eng Syst Saf. 2013;115:70–81.

    Article  Google Scholar 

  32. Hu Z, Du X. Mixed efficient global optimization for time-dependent reliability analysis. J Mech Des. 2015;137:051401.

    Article  Google Scholar 

  33. Hu Z, Du X. A sampling approach to extreme value distribution for time-dependent reliability analysis. J Mech Des. 2013;135:071003.

    Article  Google Scholar 

  34. Hu Z, Du X. Reliability analysis for hydrokinetic turbine blades. Renew Energ. 2012;48:251–62.

    Article  Google Scholar 

  35. Sudret B, Kiureghian AD. Stochastic finite elements and reliability—a state-of-the-art report. Des End User Interfaces. 2000;30:22–5.

    Google Scholar 

  36. Loève M. Probability Theory I. New York: Springer; 1977.

    Book  MATH  Google Scholar 

  37. Zhang J, Ellingwood B. Orthogonal series expansions of random fields in reliability analysis. J Eng Mech. 1994;120:2660–77.

    Article  Google Scholar 

  38. Li C, Kiureghian AD. Optimal discretization of random fields. J Eng Mech. 1993;119:1136–54.

    Article  Google Scholar 

  39. Santner TJ, Williams BJ, Notz W. The design and analysis of computer experiments. Berlin: Springer; 2003.

    Book  MATH  Google Scholar 

  40. Giunta AA. Aircraft multidisciplinary optimization using design of experiments theory and response surface modeling methods (dissertation). Blacksburg (Virginia): Virginia Polytechnic Institute and State University; 1997.

  41. Simpson TW, Mauery TM, Korte JJ, Mistree F. Comparison of response surface and kriging models for multidisciplinary design optimization. Am Inst Aeronaut Astronaut. 1998;98:1–16.

    Google Scholar 

  42. Giunta AA, Watson LT, Koehler J. A Comparison of approximation modeling techniques: polynomial versus interpolating models. In: Proceedings of the 7th AIAA/USAFETY/NASA/ ISSMO symposium on multidisciplinary analysis and design. 1998;392–404.

  43. Sn Lophaven HNJS. DACE – A MATLAB Kriging Toolbox – Version 2.0.; 2002.

  44. Echard B, Gayton N, Lemaire M. AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation. Struct Saf. 2011;33:145–54.

    Article  Google Scholar 

  45. Zhang D, Han X, Jiang C, Liu J, Li Q. Time-dependent reliability analysis through response surface method. J Mech Des. 2017;139:041404.

    Article  Google Scholar 

  46. Jiang C, Huang XP, Han X, Zhang DQ. A time-variant reliability analysis method based on stochastic process discretization. J Mech Des. 2014;136:091009.

    Article  Google Scholar 

  47. Hawchar L, Soueidy CPE, Schoefs F. Principal component analysis and polynomial chaos expansion for time-variant reliability problems. Reliab Eng Syst Saf. 2017;167:406–16.

    Article  Google Scholar 

  48. Ferreira AJM. MATLAB codes for finite element analysis. Netherlands: Springer; 2009.

    MATH  Google Scholar 

  49. Gomes HM, Awruch AM. Comparison of response surface and neural network with other methods for structural reliability analysis. Struct Saf. 2004;26:49–67.

    Article  Google Scholar 

  50. Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004;17:113–26.

    Article  MATH  Google Scholar 

  51. Jiang SH, Li DQ, Phoon KW. A comparative study of response surface method and stochastic response surface method for structural reliability analysis. Eng J Wuhan Univ. 2012;45:46–53 (in Chinese).

    Google Scholar 

  52. Wang L, Wang X, Su H, Li G. Reliability estimation of fatigue crack growth prediction via limited measured data. Int J Mech Sci. 2017;121:44–57.

    Article  Google Scholar 

  53. Wang L, Wang X, Wu D, Xu M, Qiu Z. Structural optimization oriented time-dependent reliability methodology under static and dynamic uncertainties. Struct Multidiscip O. 2018;57:1533–51.

    Article  Google Scholar 

  54. Wang L, Wang X, Wu D, Zhang X. Non-probabilistic time-variant reliability assessment (NTRA) for the active control of vibration systems with convex uncertainties. ISAT. 2018;83:276–89.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11572134 and 11832013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiao Chen or Junhong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, J., Wei, J. et al. Developing an Instantaneous Response Surface Method t-IRS for Time-Dependent Reliability Analysis. Acta Mech. Solida Sin. 32, 446–462 (2019). https://doi.org/10.1007/s10338-019-00096-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00096-5

Keywords

Navigation