Skip to main content
Log in

Fracture Toughnesses and Crack Growth Angles of Single-Layer Graphyne Sheets

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Recently, Shang et al. (Angew Chem Int Ed 57(3):774–778, 2018) have developed a method to synthesize ultrathin (around 1.9 nm) graphyne nanosheets. We reported here the mixed-mode I–II fracture toughnesses and crack growth angles of single-layer graphyne sheets using molecular dynamics (MD) simulations and the finite element (FE) method based on the boundary layer model, respectively. The various carbon–carbon bonds of graphyne sheets in the FE method are equated with the nonlinear Timoshenko beams based on the Tersoff–Brenner potential, where all the parameters of the nonlinear beams are completely determined based on the continuum modeling. All the results from the present FE method are reasonable in comparison with those from our MD simulations using the REBO potential. The present results show that both the critical stress intensity factors (SIFs) and the crack growth angle strongly depend on the chirality and loading angle \(\varphi \) (\(\varphi =90^{\circ }\) and \(\varphi =0^{\circ }\) representing pure mode I and pure mode II, respectively). Meanwhile, the fracture properties of single-layer cyclicgraphene and supergraphene sheets are also studied in order to compare with those of the graphyne sheets. The critical equivalent SIFs are derived as \(1.55<K_{{\text {eq-cy}}}\) (cyclic) \(<1.95\) nN Å\(^{-3/2}\), \(1.64<K_{{\text {eq-gy}}}\) (graphyne) \(<2.64\) nN Å\(^{-3/2}\) and \(0.61<K_{{\text {eq-su}}}\) (super)\(<2.04\) nN Å\(^{-3/2}\) in the corresponding zigzag and armchair sheets using the MD simulations, while the SIFs are \(0.32<K_{{\text {eq-cy}}}\) (cyclic) \(<0.48\) nN Å\(^{-3/2}\), \(1.96<K_{{\text {eq-gy}}}\) (graphyne) \(<2.49\) nN Å\(^{-3/2}\) and \(1.42<K_{{\text {eq-su}}}\) (super) \(<2.95\) nN Å\(^{-3/2}\) using the FE method. These findings should be of great help for understanding the fracture properties of carbon allotropes and designing the carbon-based nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hirsch A. The era of carbon allotropes. Nat Mater. 2010;9(11):868–71.

    Article  Google Scholar 

  2. Diederich F, Rubin Y. Synthetic approaches toward molecular and polymeric carbon allotropes. Cheminform. 1992;31(9):1101–23.

    Google Scholar 

  3. Cranford SW, Buehler MJ. Mechanical properties of graphyne. Carbon. 2011;49(13):4111–21.

    Article  Google Scholar 

  4. Li Y, Xu L, Liu H, Li Y. ChemInform abstract: graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev. 2014;43(8):2572–86.

    Article  Google Scholar 

  5. Irifune T, Kurio A, Sakamoto S, et al. Materials: ultrahard polycrystalline diamond from graphite. Nature. 2003;421(6923):599–600.

    Article  Google Scholar 

  6. Thompson BC, Frechet JMJ. Polymer-fullerene composite solar cells. Angew Chem Int Ed. 2008;47(1):58–77.

    Article  Google Scholar 

  7. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science. 2002;297(5582):787–92.

    Article  Google Scholar 

  8. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–5.

    Article  Google Scholar 

  9. Li C, Chou TW. Elastic properties of single-walled carbon nanotubes in transverse directions. Phys Rev B Condens Matter. 2004;69(7):428–33.

    Article  Google Scholar 

  10. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132.

    Article  Google Scholar 

  11. Zhang Z, Guo W. Energy-gap modulation of BN ribbons by transverse electric fields: first-principles calculations. Phys Rev B Condens Matter. 2008;77(7):439–46.

    Google Scholar 

  12. Li C, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct. 2003;40(10):2487–99.

    Article  MATH  Google Scholar 

  13. Chang T, Gao H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids. 2003;51(6):1059–74.

    Article  MATH  Google Scholar 

  14. Zhao J, Wei N, Fan Z, Rabczuk T. The mechanical properties of three types of carbon allotropes. Nanotechnology. 2013;24(9):095702.

    Article  Google Scholar 

  15. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46(19):3256–8.

    Article  Google Scholar 

  16. Shang H, Zuo Z, Li L, Wang F, Liu H, Li Y, Li Y. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew Chem Int Ed. 2018;57(3):774–8.

    Article  Google Scholar 

  17. Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech. 1957;24:109–14.

    MathSciNet  MATH  Google Scholar 

  18. Authier A. International tables for crystallography: Volume D: Physical properties of crystals. 2nd ed. Wiley; 2014. p. 1245–54.

  19. Enyashin AN, Ivanovskii AL. Graphene allotropes: stability, structural and electronic properties from DF–TB calculations. Phys Status Solidi. 2011;248:1879–83.

    Article  Google Scholar 

  20. Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon. 1997;35(10–11):1654–8.

    Article  Google Scholar 

  21. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.

    Article  MATH  Google Scholar 

  22. Zhang B, Xiao H, Yang G, et al. Finite element modelling of the instability in rapid fracture of graphene. Eng Fract Mech. 2015;141:111–9.

    Article  Google Scholar 

  23. Tabarraei A, Wang X, Jia D. Effects of hydrogen adsorption on the fracture properties of graphene. Comput Mater Sci. 2016;121:151–8.

    Article  Google Scholar 

  24. Belytschko T, Xiao SP, Schatz GC, et al. Atomistic simulations of nanotube fracture. Phys Rev B Condens Matter. 2002;65(23):121.

    Article  Google Scholar 

  25. Grantab R, Shenoy VB, Ruoff RS. Anomalous strength characteristics of tilt grain boundaries in graphene. Science. 2010;330(6006):946–8.

    Article  Google Scholar 

  26. Gao H, Ji B, Jager IL, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA. 2003;100(10):5597–600.

    Article  Google Scholar 

  27. Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  Google Scholar 

  28. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–9.

    Article  Google Scholar 

  29. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985;31(3):1695–7.

    Article  Google Scholar 

  30. Abaqus GUI. Abaqus 6.11[J]. Users Manual 6.11, 2011.

  31. Scarpa F, Adhikari S, Srikantha PA. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology. 2009;20(6):065709.

    Article  Google Scholar 

  32. Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B Condens Matter. 1990;42(15):9458–71.

    Article  Google Scholar 

  33. Zhang B, Yang G, Xu H. Instability of supersonic crack in graphene. Phys B Phys Condens Matter. 2014;434(1):145–8.

    Article  Google Scholar 

  34. Brenner DW, Shenderova OA, Harrison J, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14(4):783–802.

    Article  Google Scholar 

  35. Huang Y, Wu J, Hwang KC. Thickness of graphene and single-wall carbon nanotubes. Phys Rev B. 2006;74(24):4070–9.

    Article  Google Scholar 

  36. Jiang Z, Lin R, Yu P, et al. The chirality-dependent fracture properties of single-layer graphene sheets: molecular dynamics simulations and finite element method. J Appl Phys. 2017;122(2):1421–32.

    Article  Google Scholar 

  37. Zhang B, Mei L, Xiao HF. Nanofracture in graphene under complex mechanical stresses. Appl Phys Lett. 2012;101(12):121915.

    Article  Google Scholar 

  38. Xu M, Tabarraei A, Paci JT, et al. A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract. 2012;173(2):163–73.

    Article  Google Scholar 

  39. Zhang S, Zhu T, Belytschko T. Atomistic and multiscale analyses of brittle fracture in crystal lattices. Phys Rev B Condens Matter. 2007;76(9):094114.

    Article  Google Scholar 

  40. Hou J, Yin Z, Zhang Y, Chang TC. Structure dependent elastic properties of supergraphene. Acta Mech Sin. 2016;32:684–9.

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin H, Qi HJ, Fan F, Zhu T, Wang B, Wei Y. Griffith criterion for brittle fracture in graphene. Nano Lett. 2015;15:1918–24.

    Article  Google Scholar 

  42. Wei Y, Yang R. Nanomechanics of graphene. Natl Sci Rev. 2018;0:1–25.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge supports from the National Natural Science Foundation of China (Grant Nos. 11572140 and 11602096), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180031, BK20160158), the National First-Class Discipline Program of Food Science and Technology (Grant No. JUFSTR20180205), the 111 Project (Grant No. B18027), the Programs of Innovation and Entrepreneurship of Jiangsu Province, Primary Research and Development Plan of Jiangsu Province (Grant No. BE2017069), Science and Technology Plan Project of Wuxi, the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP11529 and JG2015059), Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_1473), Research Project of State Key Laboratory of Mechanical System and Vibration (MSV201909), the Project of Jiangsu Provincial Six Talent Peaks in Jiangsu Province and the Thousand Youth Talents Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Lin, R. & Zhao, J. Fracture Toughnesses and Crack Growth Angles of Single-Layer Graphyne Sheets. Acta Mech. Solida Sin. 32, 339–355 (2019). https://doi.org/10.1007/s10338-019-00086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00086-7

Keywords

Navigation