Skip to main content
Log in

Estimations of Three Characteristic Stress Ratios for Rockfill Material Considering Particle Breakage

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The particle breakage during specimen shearing has a significant influence on the critical-state line (CSL) of the rockfill material. A series of large-scale triaxial compression tests on the rockfill material from Henan Province (HPR) were conducted in a wide range of initial void ratios and confining pressures. The influences of the particle breakage on the critical-state stress ratio \(M_{\mathrm{c}}\), the peak stress ratio \(M_{\mathrm{p}}\) and dilatancy stress ratio \(M_{\mathrm{d}}\) were investigated. The deviatoric stress and particle breakage of the HPR at the critical state increase with the increase in confining pressure, while the influences of the initial void ratio on these behaviors are too little to be considered. The gradient of the CSL in the \(q\hbox {-}p\) space of the rockfill, \(M_{\mathrm{c}}\), was found to be passively correlated with the particle breakage index \(B_{\mathrm{r}}\), rather than being a constant. Additionally, the observed values of \(M_{\mathrm{c}}\) at low confining pressures (low particle breakage occur) will be substantially undervalued if \(M_{\mathrm{c}}\) is estimated as a constant. In the critical-state-theory-based constitutive models, \(M_{\mathrm{p}}\) and \(M_{\mathrm{d}}\) are estimated as the combinations of \(M_{\mathrm{c}}\) and state parameter \(\psi \). It is believed that the simulations of \(M_{\mathrm{p}}\) and \(M_{\mathrm{d}}\) when \(M_{\mathrm{c}}\) is correlated with \(B_{\mathrm{r}}\) are obviously more favorable than those when \(M_{\mathrm{c}}\) is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

qp :

deviatoric stress, mean effective stress

e :

void ratio

\(e_{\mathrm{c}}\) :

critical-state void ratio

\(e_{0}\) :

initial void ratio

\(\sigma _{3}\) :

confining pressure

\(M_{\mathrm{c}}\) :

critical-state stress void

\(q_{\mathrm{c}}, p_{\mathrm{c}}\) :

deviatoric stress, mean effective stress at the critical state

\(M_{\mathrm{d}}\) :

dilatancy stress ratio

\(q_{\mathrm{p}}, p_{\mathrm{p}}\) :

peak deviatoric stress, peak mean effective stress

\(M_{\mathrm{p}}\) :

peak stress ratio

\(p_{\mathrm{a}}\) :

atmospheric pressure

\(\psi \) :

state parameter

\(\varepsilon _{\mathrm{a}}\) :

axial strain

\(\varepsilon _{\mathrm{v}}\) :

volumetric strain

d :

particle size

\(d_{\mathrm{max}}\) :

the maximum particle size

D :

the fractal dimension

\(B_{\mathrm{r}}\) :

particle breakage index

\(\phi \) :

friction angle

\(M_{\mathrm{c0}}, \chi , \mu \) :

material constants corresponding to \(M_{\mathrm{c}}\)

\(e_{\Gamma }, \lambda , \xi \) :

material constants corresponding to the CSL in the \(e\hbox {-}(p/p_{\mathrm{a}})^{\xi }\) space

\(D_{0}, D_{\mathrm{c}}, D_{\mathrm{u}}\) :

fractal dimensions of the initial PSD, current PSD and ultimate PSD

References

  1. Daouadji A, Hicher PY. An enhanced constitutive model for crushable granular materials. Int J Numer Anal Methods Geomech. 2010;34(6):555–80.

    MATH  Google Scholar 

  2. Honkanadavar N, Sharma KG. Testing and modeling the behavior of riverbed and blasted quarried rockfill materials. Int J Geomech. 2014;14(6):04014028.

    Article  Google Scholar 

  3. Sun Y, Xiao Y, Hanif KF. Fractional order modelling of the cumulative deformation of granular soils under cyclic loading. Acta Mech Solida Sin. 2015;28(6):647–58.

    Article  Google Scholar 

  4. Suazo G, Fourie A, Doherty J. Experimental study of the evolution of the soil water retention curve for granular material undergoing cement hydration. J Geotech Geoenviron Eng. 2016;142(7):04016022.

    Article  Google Scholar 

  5. Duncan JM, Chang C-Y. Nonlinear analysis of stress and strain in soils. ASCE Soil Mech Found Division J. 1970;96(5):1629–53.

    Google Scholar 

  6. Varadarajan A, Sharma KG, Venkatachalam K, et al. Testing and modeling two rockfill materials. J Geotech Geoenviron Eng. 2003;129(3):206–18.

    Article  Google Scholar 

  7. Liu M, Gao Y, Liu H. An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage. Int J Numer Anal Methods Geomech. 2014;38(9):935–60.

    Article  Google Scholar 

  8. Xiao Y, Liu H. Elastoplastic constitutive model for rockfill materials considering particle breakage. Int J Geomech. 2017;17(1):04016041.

    Article  MathSciNet  Google Scholar 

  9. Xu Y, Feng X, Zhu H, Chu F. Fractal model for rockfill shear strength based on particle fragmentation. Granul Matter. 2015;17(6):753–61.

    Article  Google Scholar 

  10. Yao YP, Yamamoto H, Wang ND. Constitutive model considering sand breakage. Soils Found. 2015;48(2):12–5.

    Google Scholar 

  11. Guo WL, Zhu JG, Peng WM. Study on dilatancy equation and generalized plastic constitutive model for coarse-grained soil. Chin J Geotech Eng. 2018;40(6):1103–10 (in Chinese).

    Google Scholar 

  12. Xiao Y, Liu H, Chen Q, Long L, Xiang J. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granul Matter. 2017;19(4):71.

    Article  Google Scholar 

  13. Li XS, Wang Y. Linear representation of steady-state line for sand. J Geotech Geoenviron Eng. 1998;124(12):1215–7.

    Article  Google Scholar 

  14. Wan RG, Guo PJ. A simple constitutive model for granular soils: modified stress-dilatancy approach. Comput Geotech. 1998;22(2):109–33.

    Article  Google Scholar 

  15. Biarez J, Hicher PY. Elementary mechanics of soil behaviour: saturated remoulded soils. Amsterdam: A.A. Balkema; 1994.

    Google Scholar 

  16. Li XS, Dafalias YF, Wang ZL. State-dependent dilatancy in critical-state constitutive modeling of sand. Can Geotech J. 1999;36(4):599–611.

    Article  Google Scholar 

  17. Jin YF, Wu ZX, Yin ZY, Shen JS. Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech. 2017;12(6):1–23.

    Article  Google Scholar 

  18. Roscoe KH, Schofield AN, Thurairajah A. Yielding of clays in states wetter than critical. Géotechnique. 1963;13(3):211–40.

    Article  Google Scholar 

  19. Muir Wood D, Maeda K. Changing grading of soil: effect on critical states. Acta Geotech. 2008;3(1):3–14.

    Article  Google Scholar 

  20. Xiao Y, Liu H, Ding X, Chen Y, Jiang J, Zhang W. Influence of particle breakage on critical state line of rockfill material. Int J Geomech. 2016;16(1):04015031.

    Article  Google Scholar 

  21. Nader F, Silvani C, Djeran-Maigre I. Grain breakage under uniaxial compression using a three-dimensional discrete element method. Granul Matter. 2017;19(3):53.

    Article  Google Scholar 

  22. Russell AR, Khalili N. A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J. 2004;41(6):1179–92.

    Article  Google Scholar 

  23. Xiao Y, Sun Y, Liu H, Yin F. Critical state behaviors of a coarse granular soil under generalized stress conditions. Granul Matter. 2016;18(2):17.

    Article  Google Scholar 

  24. Been K, Jefferies MG. A state parameter for sands. Géotechnique. 1985;35(2):99–112.

    Article  Google Scholar 

  25. Wang ZL, Dafalias YF, Li XS, Makdisi FI. State pressure index for modeling sand behavior. J Geotech Geoenviron Eng. 2002;128(6):511–9.

    Article  Google Scholar 

  26. Coop MR, Sorensen KK, Bodas FT. Particle breakage during shearing of a carbonate sand. Géotechnique. 2004;54(3):157–63.

    Article  Google Scholar 

  27. McDowell GR, Bolton MD, Robertson D. The fractal crushing of granular materials. J Mech Phys Solids. 1996;44(12):2079–102.

    Article  Google Scholar 

  28. Einav I. Breakage mechanics—part I: theory. J Mech Phys Solids. 2007;55(6):1274–97.

    Article  MathSciNet  MATH  Google Scholar 

  29. Carrera A, Coop M, Lancellotta R. Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique. 2011;61(11):935–46.

    Article  Google Scholar 

  30. Indraratna B, Nimbalkar S, Coop M, Sloan SW. A constitutive model for coal-fouled ballast capturing the effects of particle degradation. Comput Geotech. 2014;61(9):96–107.

    Article  Google Scholar 

  31. Xiao Y, Liu HL, Chen Y, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure. J Geotech Geoenviron Eng. 2014;140(12):04014070.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research Grant from National Key R&D Program of China (2017YFC0405102), the financial support (GG201705) from Key Technologies R&D Program of Henan Water Conservancy, and the fund on basic scientific research project of nonprofit central research institutions (Y318005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Li Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, WL., Cai, ZY., Wu, YL. et al. Estimations of Three Characteristic Stress Ratios for Rockfill Material Considering Particle Breakage. Acta Mech. Solida Sin. 32, 215–229 (2019). https://doi.org/10.1007/s10338-019-00074-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00074-x

Keywords

Navigation