Skip to main content
Log in

A particle-breakage critical state model for rockfill material

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Particle breakage has a significant influence on the stress-strain and strength behavior of rockfill material. A breakage critical state theory (BCST) was proposed to describe the evolution of particle breakage. The breakage critical state line in the breakage critical state theory was correlated with the breakage factor, which was fundamentally different from that of the original critical state theory. A simple elastoplastic constitutive model was developed for rockfill in the frame of BCST. An associated flow rule was adopted in this model. Isotropic, contractive and distortional hardening rules were suggested in view of the particle breakage. It was observed that the proposed model could well represent the complex deformation behaviors of rockfill material, such as the strain hardening, post-peak strain softening, volumetric contraction, volumetric expansion, and particle breakage under different initial confining pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu Z W, Ning J G, Ma W. A constitutive model of frozen soil with damage and numerical simulation for the coupled problem. Sci China Phys Mech Astron, 2010, 53: 699–711

    Article  Google Scholar 

  2. Ning J G, Liu H F, Shang L. Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings. Sci China Phys Mech Astron, 2008, 51: 1745–1760

    Article  Google Scholar 

  3. Sun S Y, Chen H R. The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model. Sci China Phys Mech Astron, 2011, 54: 1481–1487

    Article  Google Scholar 

  4. Marsal R J. Large scale testing of rockfill materials. J Soil Mech Found ASCE, 1967, 93: 27–43

    Google Scholar 

  5. Indraratna B, Wijewardena L S S, Balasubramaniam A S. Large-scale triaxial testing of greywacke rockfill. Géotechnique, 1993, 43: 37–51

    Article  Google Scholar 

  6. Miura, S, Yangi K, Asonuma T. Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing. Soils Found, 2003, 43: 47–57

    Article  Google Scholar 

  7. Varadarajan A, Sharma K G, Venkatachalam K, et al. Testing and modeling two rockfill materials. J Geotech Geoenviron Eng ASCE, 2003, 129: 206–218

    Article  Google Scholar 

  8. Varadarajan A, Sharma K G., Abbas S M, et al. Constitutive model for rockfill materials and determination of material constants. Int J Geomech ASCE, 2006, 6: 226–237

    Article  Google Scholar 

  9. Guo X L, Hu H, Bao C G. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rockfill (in Chinese). Chin J Geotech Eng, 1997, 19: 83–88

    Google Scholar 

  10. Xiao Y, Liu H L, Chen Y, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure. J Geotech Geoenviron Eng, 2014, 140: 04014070

    Article  Google Scholar 

  11. Liu H L, Deng A, Sheng Y. Shear behavior of coarse aggregates for dam construction under varied stress paths. Water Sci Eng, 2008, 1: 63–77

    Article  Google Scholar 

  12. Honkanadavar N, Sharma K G. Testing and modeling the behavior of riverbed and blasted quarried rockfill materials. Int J Geomech, 2014, 14: 04014028

    Article  Google Scholar 

  13. Liu M, Gao Y, Liu H. An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage. Int J Numer Anal Met, 2014, 38: 935–960

    Article  Google Scholar 

  14. Fu Z, Chen S, Peng C. Modeling the cyclic behaviour of rockfill materials within the framework of generalized plasticity. Int J Geomech, 2014, 14: 191–204

    Article  Google Scholar 

  15. Hardin B O. Crushing of soil particles. J Geotech Eng ASCE, 1985, 111: 1177–1192

    Article  Google Scholar 

  16. Lee K L, Farhoomand I. Compressibility and crushing of granular soil. Can Geotech J, 1967, 4: 68–86

    Article  Google Scholar 

  17. Lade P, Yamamuro J A, Bopp P A. Significance of particle crushing in granular materials. J Geotech Eng ASCE, 1996, 122: 309–316

    Article  Google Scholar 

  18. Bai S T, Cui Y H. The mechanics characteristic of rockfill (in Chinese). J Hydroelectr Eng, 1997, 3: 21–30

    Google Scholar 

  19. Miura, S, Yangi K, Asonuma T. Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing. Soils Found, 2003, 43: 47–57

    Article  Google Scholar 

  20. Miura N, Ohara S. Particle-crushing of a decomposed granite soils under shear stresses. Soils Found, 1979, 19: 1–14

    Article  Google Scholar 

  21. Katz A J, Thompson A H. Fractal sandstone pores: implications for conductivity and pore formation. Phys Rev Lett, 1985, 54: 1325–1328

    Article  Google Scholar 

  22. Turcotte D L. Fractals and fragmentation. J Geophys Res, 1986, 91: 1921–1926

    Article  Google Scholar 

  23. Sun Y F, Xiao Y, Hanif K F. Compressibility dependence on grain size distribution and relative density in sands. Sci China Tech Sci, 2015, 58: 443–448.

    Article  Google Scholar 

  24. McDowell G R, Bolton M D, Robertson D. The fractal crushing of granular materials. J Mech Phys Solids, 1996, 44: 2079–2102

    Article  Google Scholar 

  25. Xiao Y, Liu H, Chen Y, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of Particle Breakage. J Geotech Geoenviron Eng, 2014, 140:04014071.

    Article  Google Scholar 

  26. Nakata Y, Hyde A F L, Hyodo M, et al. A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique, 1999, 49: 567–583

    Article  Google Scholar 

  27. Einav I. Breakage mechanics-Part I: Theory. J Mech Phys Solids, 2007, 55: 1274–1297

    Article  MathSciNet  Google Scholar 

  28. Einav I. Fracture propagation in brittle granular matter. Proc R Soc A, 2007, 463: 3021–3035

    Article  Google Scholar 

  29. Kulhawy F H, Duncan J M. Stresses and movements in Oroville dam. J Soil Mech Found ASCE, 1972, 98: 653–665

    Google Scholar 

  30. Saboya F J Jr, Byrne P M. Parameters for stress and deformation analysis of rockfill dam. Can Geotech J, 1993, 30: 690–701

    Article  Google Scholar 

  31. Lade P V, Kim M K. Single hardening constitutive model for soil, rock and concrete. Int J Solids Struct, 1995, 32: 1963–1978

    Article  Google Scholar 

  32. Liu H L, Xiao Y, Liu J Y, et al. A new elliptic-parabolic yield surface model revised by an adaptive criterion for granular soils. Sci China Tech Sci, 2010, 53: 2152–2159

    Article  MathSciNet  Google Scholar 

  33. Gudehus G. A comprehensive constitutive equation for granular materials. Soils Found, 1996, 36: 1–12

    Article  Google Scholar 

  34. Bauer E. Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotechnica, 2009, 4: 261–272

    Article  Google Scholar 

  35. Cen W J, Wang X X, Bauer E, et al. Study on hypoplastic constitutive modeling of rockfill and its application (in Chinese). Chin J Geotech Eng, 2007, 26: 312–322

    Google Scholar 

  36. Oldecop L A, Alonso E E. A model for rockfill compressibility. Géotechnique, 2001, 51: 127–139

    Article  Google Scholar 

  37. Chu B L, Jou Y W, Weng M C. A constitutive model for gravelly soils considering shear-induced volumetric deformation. Can Geotech J, 2010, 47: 662–673

    Article  Google Scholar 

  38. Araei A. A. Artificial neural networks for modeling drained monotonic behavior of rockfill materials. Int J Geomech, 2014, 14: 04014005

    Article  Google Scholar 

  39. Desai C S, Toth J. Disturbed state constitutive modelling based on stress-strain and nondestructive behavior. Int J Solids Struct, 1996, 33: 1619–1650

    Article  Google Scholar 

  40. Desai C S, Basaran C, Zhang W. Numerical algorithms and mesh dependence in the disturbed state concept. Int J Numer Meth Eng, 1997, 40: 3059–3083

    Article  Google Scholar 

  41. Yao Y P, Yamamoto H, Wang N D. Constitutive model considering sand crushing. Soils Found, 2008, 48: 601–608

    Article  Google Scholar 

  42. Sun D, Huang W, Sheng D, et al. An elastoplastic model for granular materials exhibiting particle crushing. Key Eng Mater, 2006, 340–341: 1255–1248

    Google Scholar 

  43. Sun Y., Xiao Y, Ju W. Bounding surface model for ballast with additional attention on the evolution of particle size distribution. Sci China Tech Sci, 2014, 57: 1352–1360

    Article  Google Scholar 

  44. Xiao Y, Liu H L, Chen Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J Eng Mech, 2014, 140: 04014002

    Article  Google Scholar 

  45. Xiao Y, Liu H, Chen Y, et al. Bounding surface plasticity model incorporating the state pressure index for rockfill materials. J Eng Mech, 2014, 140: 04014087

    Article  Google Scholar 

  46. Xiao Y, Liu H L, Zhu J G, et al. Modeling and behaviours of rockfill materials in three-dimensional stress space. Sci China Tech Sci, 2012, 55: 2877–2892

    Article  Google Scholar 

  47. Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in state wetter than critical. Géotechnique, 1963, 13: 211–240

    Article  Google Scholar 

  48. Roscoe K H, Burland J B. On the generalized stress-strain behavior of ‘wet’ clay. Engineering Plasticity. Cambridge: Cambridge University Press, 1968. 535–609

    Google Scholar 

  49. Been K, Jefferies M G. A state parameter for sand. Géotechnique, 1985, 35: 99–112

    Article  Google Scholar 

  50. Li X S, Dafalias Y F, Wang Z L. State-dependent dilatancy in critical-state constitutive modeling of sand. Can Geotech J, 1999, 36: 599–611

    Article  Google Scholar 

  51. Russell A R, Khalili N. A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J, 2004, 41: 1179–1192

    Article  Google Scholar 

  52. Daouadji A, Hicher P Y. An enhanced constitutive model for crushable granular materials. Int J Numer Anal Methods Geomech, 2010, 34: 555–580

    Google Scholar 

  53. Daouadji A, Hicher P Y, Rahma A. An elastoplastic model for granular materials taking into account grain breakage. Eur J Mech A-Solids, 2001, 20: 113–137

    Article  Google Scholar 

  54. Muir Wood D, Maeda K. Changing grading of soil: Effect on critical states. Acta Geotechnica, 2008, 3: 3–14

    Article  Google Scholar 

  55. Lo K Y, Roy M. Response of particulate materials at high pressures. Soils Found, 1973, 13: 61–76

    Article  Google Scholar 

  56. Yamamuro J A, Lade P V. Drained sand behaviour in axisymmetric tests at high pressures. J Geotech Eng ASCE, 1996, 122: 109–119

    Article  Google Scholar 

  57. Coop M R, Sorensen K K, Bodas F T. Particle breakage during shearing of a carbonate sand. Géotechnique, 2004, 54: 157–163

    Article  Google Scholar 

  58. Liu M C, Gao Y F, Huang X M. Study on elasto-plastic constitutive model of rockfills with nonlinear strength characteristics (in Chinese). Chin J Geotech Eng, 2005, 27: 294–298

    Google Scholar 

  59. Liu E L, Chen S S, Li G Y, et al. Critical state of rockfill materials and a constitutive model considering grain crushing (in Chinese). Rock Soil Mech, 2011, 32: 148–154

    Google Scholar 

  60. Ding S Y, Cai Z Y, Ling H. Strength and deformation characteristics and critical state of rock fill (in Chinese). Chin J Geotech Eng, 2010, 32: 248–252

    Google Scholar 

  61. McDowell G R, Bolton M D, Robertson D. The fractal crushing of granular materials. J Mech Phys Solids, 1996, 44: 2079–2102

    Article  Google Scholar 

  62. Bardet J P. Bounding surface plasticity model for sands. J Eng Mech ASCE, 1986, 112: 1198–1217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Sun, Y. & Hanif, K.F. A particle-breakage critical state model for rockfill material. Sci. China Technol. Sci. 58, 1125–1136 (2015). https://doi.org/10.1007/s11431-015-5831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5831-2

Keywords

Navigation