Skip to main content
Log in

Damping of Particle-Reinforced Composites Due to Interfacial Sliding

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Mechanical damping of composites reinforced by randomly distributed particles due to interfacial sliding is analyzed. The matrix is elastically isotropic, and the particles are assumed rigid and of identical radii. An auxiliary problem is solved at first for the steady-state response of an infinite matrix containing a single inclusion to a harmonic external load. The result is then used to derive the explicit expression of the specific damping capability of the composite by using Mori–Tanaka’s mean-field method. Numerical results are given and discussed in detail. It is concluded that the overall damping of the composite depends on several factors, including volume fraction of particles, Poisson’s ratio of matrix and a dimensionless parameter that incorporates the combined effects of particle size, matrix stiffness, interfacial viscosity and vibration frequency. The result is expected to be helpful in tailoring the damping performance of particle-reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saravanos DA, Chamis CC. An integrated methodology for optimizing the passive damping of composite structures. Polym Compos. 1990;11(6):328–36.

    Article  Google Scholar 

  2. Benchekchou B, Coni M, Howarth H, White R. Some aspects of vibration damping improvement in composite materials. Compos Part B Eng. 1998;29B:809–17.

    Article  Google Scholar 

  3. Finegan I, Gibson R. Recent research on enhancement of damping in polymer composites. Compos Struct. 1999;44(2–3):89–98.

    Article  Google Scholar 

  4. Chandra R, Singh S, Gupta K. Damping studies in fiber-reinforced composites-a review. Compos Struct. 1999;46:41–51.

    Article  Google Scholar 

  5. Chung D. Structural composite materials tailored for damping. J Alloys Compd. 2003;355:216–23.

    Article  Google Scholar 

  6. Treviso A, Van Genechten B, Mundo D, Tournour M. Damping in composite materials: properties and models. Compos Part B Eng. 2015;78:144–52.

    Article  Google Scholar 

  7. Chua PS. Dynamic mechanical analysis studies of the interphase. Polym Compos. 1987;8(5):308–13.

    Article  Google Scholar 

  8. Chinquin J, Chabert B, Chauchard J, Morel E, Totignon JP. Characterization of thermoplastic (polyamide) reinforced with unidirectional glass fibers, matrix additives and fibers surface treatment influence on mechanical and viscoelastic properties. Composites. 1990;21(2):141–7.

    Article  Google Scholar 

  9. Dond S, Gauvin R. Application of dynamic mechanical analysis for the study of interfacial region in carbon fiber/epoxy composites materials. Composites. 1993;14(5):414–20.

    Google Scholar 

  10. Hwang S, Gibson R. Prediction of fiber-matrix interphase effects on damping of composites using a micromechanical strain energy/finite element approach. Compos Eng. 1993;3:975–84.

    Article  Google Scholar 

  11. Chturvedi SK, Tzeng GY. Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites. Compos Eng. 1991;1(1):49–60.

    Article  Google Scholar 

  12. Vatome J. A parametric study of material damping in fiber-reinforced plastics. Composites. 1995;26(2):147–53.

    Article  Google Scholar 

  13. Finegan I, Gibson R. Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers. Compos Sci Technol. 2000;60:3–8.

    Article  Google Scholar 

  14. Fisher FT, Brinson LC. Viscoelastic interphases in polymer-matrix composites: theoretical models and finite-element analysis. Compos Sci Technol. 2001;61(5):731–48.

    Article  Google Scholar 

  15. Raj R, Ashby M. On grain boundary sliding and diffusional creep. Metall Trans. 1971;A 2:1113–27.

    Article  Google Scholar 

  16. Funn JV, Dutta I. Creep behavior of interfaces in fiber reinforced metal-matrix composites. Acta Mater. 1998;47(1):149–64.

    Article  Google Scholar 

  17. Mori T, Huang JH, Taya M. Stress relaxation by plastic flow, interfacial sliding and diffusion in an inclusion bearing material. Acta Mater. 1997;45(2):429–38.

    Article  Google Scholar 

  18. Mori T, Onaka S, Wakashima K. Role of grain-boundary sliding in diffusional creep of polycrystals. J Appl Phys. 1998;83:7547–52.

    Article  Google Scholar 

  19. Onaka S, Wakashima K, Mori T. Kinetics of diffusional creep discussed by energy dissipation and effect of grain-size distribution on the rate equations. Acta Mater. 2001;49(12):2161–8.

    Article  Google Scholar 

  20. Madgwick A, Mori T, Onaka S, Withers PJ. Creep of a composite with diffusional creeping matrix. Mater Sci Eng A. 2002;335(1–2):320–3.

    Article  Google Scholar 

  21. He LH. Transient stress relaxation around spherical inclusions by interfacial diffusion and sliding. Acta Mech. 2001;149(1):115–33.

    Article  Google Scholar 

  22. He LH, Jiang J. Transient mechanical response of laminated elastic strips with viscous interfaces in cylindrical bending. Compos Sci Technol. 2003;63(6):821–8.

    Article  Google Scholar 

  23. He LH, Liu YL. Damping behavior of fibrous composites with viscous interface under longitudinal shear loads. Compos Sci Technol. 2005;65(6):855–60.

    Article  Google Scholar 

  24. Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–4.

    Article  Google Scholar 

  25. Benveniste Y. A new approach to the application of Mori–Tanaka theory in composite materials. Mech Mater. 1987;6(2):147–57.

    Article  MathSciNet  Google Scholar 

  26. Mal AK, Singh SJ. Deformation of elastic solids. Upper Saddle River: Prentice-Hall; 1991.

    MATH  Google Scholar 

  27. Zener C. Elasticity and anelasticity of metals. Chicago: The University of Chicago; 1948.

    MATH  Google Scholar 

  28. Nowick A, Berry B. Anelastic relaxation in crystalline solids. Cambridge: Academic Press; 1972.

    Google Scholar 

  29. Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials. Amsterdam: North-Holland; 1993.

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported from the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040502), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghui He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Liu, R. Damping of Particle-Reinforced Composites Due to Interfacial Sliding. Acta Mech. Solida Sin. 31, 623–634 (2018). https://doi.org/10.1007/s10338-018-0051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0051-5

Keywords

Navigation