Skip to main content
Log in

Influence of the Column Inner Diameter on Chromatographic Efficiency in Miniaturized and Conventional Ultra-High-Performance Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

To reduce solvent consumption and cycle times of analyses, the inner diameters (ID) of separation columns are being reduced continuously. In particular, 1.0 mm inner diameter columns seem to be the next logical step, as they represent a good compromise between sample loading and analysis speed. However, the necessary optimization of the extra-column volume is often not considered. The aim of this study was therefore to investigate the influence of the column inner diameter on the efficiency in the isocratic and gradient elution mode. The efficiency of 0.3, 0.5, 1.0, and 2.1 mm inner diameter columns were compared using a µ-HPLC and UHPLC system. To enable a fair comparison between the different columns, the linear flow velocity was kept constant. In isocratic mode, the influence of the extra-column volume dispersion was assessed by the peak standard deviation and the reduced plate height. In gradient mode, the separation of 7 antineoplastic drugs was compared in terms of the peak capacity and chromatographic resolution. Amongst other things, it was shown that the ratio between extra-column volume and effective-column volume can be a simple parameter for choosing an appropriate column ID /HPLC combination. An unfavorable ratio between extra-column volume and effective-column volume led to a doubling of the minimum plate height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is available from the authors upon request.

References

  1. Jorgenson JW, Guthrie EJ (1983) Liquid chromatography in open-tubular columns. Theory of column optimization with limited pressure and analysis time, and fabrication of chemically bonded reversed-phase columns on etched borosilicate glass capillaries. J Chromatogr A 255:335–348. https://doi.org/10.1016/S0021-9673(01)88293-5

    Article  CAS  Google Scholar 

  2. Novotny MV (2017) Development of capillary liquid chromatography: a personal perspective. J Chromatogr A 1523:3–16. https://doi.org/10.1016/j.chroma.2017.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiang P, Yang Y, Zhao Z, Chen M, Liu S (2019) Ultrafast gradient separation with narrow open tubular liquid chromatography. Anal Chem 91:10738–10743. https://doi.org/10.1021/acs.analchem.9b02190

    Article  CAS  PubMed  Google Scholar 

  4. Thoben C, Werres T, Henning I, Simon PR, Zimmermann S, Schmidt TC, Teutenberg T (2022) Towards a miniaturized on-site nano-high performance liquid chromatography electrospray ionization ion mobility spectrometer with online enrichment. Green Anal Chem 1:100011. https://doi.org/10.1016/j.greeac.2022.100011

    Article  Google Scholar 

  5. Napolitano-Tabares PI, Negrín-Santamaría I, Gutiérrez-Serpa A, Pino V (2021) Recent efforts to increase greenness in chromatography. Curr Opin Green Sustain Chem 32:100536. https://doi.org/10.1016/j.cogsc.2021.100536

    Article  CAS  Google Scholar 

  6. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010

    Article  CAS  Google Scholar 

  7. Gritti F, Wahab MF (2018) Understanding the science behind packing high-efficiency columns and capillaries: facts fundamentals, challenges, and future directions. LCGC North Am 36:82–98

    CAS  Google Scholar 

  8. Werres T, Schmidt TC, Teutenberg T (2021) The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution. J Chromatogr A 1641:461965. https://doi.org/10.1016/j.chroma.2021.461965

    Article  PubMed  Google Scholar 

  9. Wang H, Bennett P (2013) Performance assessment of microflow LC combined with high-resolution MS in bioanalysis. Bioanalysis 5:1249–1267. https://doi.org/10.4155/bio.13.93

    Article  CAS  PubMed  Google Scholar 

  10. Heemskerk AAM, Busnel JM, Schoenmaker B, Derks RJE, Klychnikov O, Hensbergen PJ, Deelder AM, Mayboroda OA (2012) Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics. Anal Chem 84:4552–4559. https://doi.org/10.1021/ac300641x

    Article  CAS  PubMed  Google Scholar 

  11. Mejía-Carmona K, da Soares Silva Burato J, Borsatto JVB, de Toffoli AL, Lanças FM (2020) Miniaturization of liquid chromatography coupled to mass spectrometry: 1 Current trends on miniaturized LC columns. TrAC Trends Anal Chem 122:115735. https://doi.org/10.1016/j.trac.2019.115735

    Article  CAS  Google Scholar 

  12. Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S (2019) High-resolution nano-liquid chromatography with tandem mass spectrometric detection for the bottom-up analysis of complex proteomic samples. Chromatographia 82:101–110. https://doi.org/10.1007/s10337-018-3647-5

    Article  CAS  Google Scholar 

  13. Rahimi F, Chatzimichail S, Saifuddin A, Surman AJ, Taylor-Robinson SD, Salehi-Reyhani A (2020) A Review of portable high-performance liquid chromatography: the future of the field? Springer, Berlin. https://doi.org/10.1007/s10337-020-03944-6

    Book  Google Scholar 

  14. Patel DC, Wahab MF, O’Haver TC, Armstrong DW (2018) Separations at the speed of sensors. Anal Chem 90:3349–3356. https://doi.org/10.1021/acs.analchem.7b04944

    Article  CAS  PubMed  Google Scholar 

  15. Halász I, Endele R, Asshauer J (1975) Ultimate limits in high-pressure liquid chromatography. J Chromatogr A 112:37–60. https://doi.org/10.1016/S0021-9673(00)99941-2

  16. Fekete S, Murisier A, Losacco GL, Lawhorn J, Godinho JM, Ritchie H, Boyes BE, Guillarme D (2021) Using 1.5 mm internal diameter columns for optimal compatibility with current liquid chromatographic systems. J Chromatogr A 1650:462258. https://doi.org/10.1016/j.chroma.2021.462258

    Article  CAS  PubMed  Google Scholar 

  17. Libert BP, Godinho JM, Foster SW, Grinias JP, Boyes BE (2022) Implementing 1.5 mm internal diameter columns into analytical workflows. J Chromatogr A 1676:463207. https://doi.org/10.1016/j.chroma.2022.463207

    Article  CAS  PubMed  Google Scholar 

  18. Lestremau F, Wu D, Szücs R (2010) Evaluation of 1.0mm i.d. column performances on ultra high pressure liquid chromatography instrumentation. J Chromatogr A 1217:4925–4933. https://doi.org/10.1016/j.chroma.2010.05.044

    Article  CAS  PubMed  Google Scholar 

  19. Broeckhoven K, Desmet G (2020) Advances and challenges in extremely high-pressure liquid chromatography in current and future analytical scale column formats. Anal Chem 92:554–560. https://doi.org/10.1021/acs.analchem.9b04278

    Article  CAS  PubMed  Google Scholar 

  20. Desmet G, Broeckhoven K (2019) Extra-column band broadening effects in contemporary liquid chromatography: causes and solutions. TrAC Trends Anal Chem 119:115619. https://doi.org/10.1016/j.trac.2019.115619

    Article  CAS  Google Scholar 

  21. Vanderlinden K, Broeckhoven K, Vanderheyden Y, Desmet G (2016) Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions. J Chromatogr A 1442:73–82. https://doi.org/10.1016/j.chroma.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  22. Stankovich JJ, Gritti F, Stevenson PG, Guiochon G (2013) The impact of column connection on band broadening in very high pressure liquid chromatography. J Sep Sci 36:2709–2717. https://doi.org/10.1002/jssc.201300175

    Article  CAS  PubMed  Google Scholar 

  23. Gritti F, Guiochon G (2011) On the minimization of the band-broadening contributions of a modern, very high pressure liquid chromatograph. J Chromatogr A 1218:4632–4648. https://doi.org/10.1016/J.CHROMA.2011.05.024

    Article  CAS  PubMed  Google Scholar 

  24. Werres T, Schmidt TC, Teutenberg T (2022) Peak broadening caused by using different micro–liquid chromatography detectors. Anal Bioanal Chem. https://doi.org/10.1007/s00216-022-04170-9

    Article  PubMed  Google Scholar 

  25. Spaggiari D, Fekete S, Eugster PJ, Veuthey JL, Geiser L, Rudaz S, Guillarme D (2013) Contribution of various types of liquid chromatography-mass spectrometry instruments to band broadening in fast analysis. J Chromatogr A 1310:45–55. https://doi.org/10.1016/j.chroma.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Hetzel T, vom Eyser C, Tuerk J, Teutenberg T, Schmidt TC (2016) Micro-liquid chromatography mass spectrometry for the analysis of antineoplastic drugs from wipe samples. Anal Bioanal Chem 408:8221–8229. https://doi.org/10.1007/s00216-016-9932-y

    Article  CAS  PubMed  Google Scholar 

  27. Reising AE, Schlabach S, Baranau V, Stoeckel D, Tallarek U (2017) Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J Chromatogr A 1513:172–182. https://doi.org/10.1016/j.chroma.2017.07.049

    Article  CAS  PubMed  Google Scholar 

  28. Gritti F, Dion M, Felinger A, Savaria M (2018) Characterization of radial and axial heterogeneities of chromatographic columns by flow reversal. J Chromatogr A 1567:164–176. https://doi.org/10.1016/j.chroma.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  29. Gritti F (2018) A stochastic view on column efficiency. J Chromatogr A 1540:55–67. https://doi.org/10.1016/j.chroma.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  30. Werres T, Leonhardt J, Jäger M, Teutenberg T (2019) Critical comparison of liquid chromatography coupled to mass spectrometry and three different ion mobility spectrometry systems on their separation capability for small isomeric compounds. Chromatographia 82:251–260. https://doi.org/10.1007/s10337-018-3640-z

    Article  CAS  Google Scholar 

  31. Gritti F, Tanaka N (2019) Slow injector-to-column sample transport to maximize resolution in liquid chromatography: theory versus practice. J Chromatogr A 1600:219–237. https://doi.org/10.1016/j.chroma.2019.04.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Federal Ministry for Economic Affairs and Climate Action for funding the INNO-KOM project 49MF210010. Furthermore, we would like to thank Dr. Daniel Eßer from YMC Europe GmbH for providing the HPLC columns.

Author information

Authors and Affiliations

Authors

Contributions

TW: Conceptualization, Investigation, Visualization, Project administration, Writing—original draft. TCS: Supervision, Writing—review and editing. TT: Funding acquisition, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Thorsten Teutenberg.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werres, T., Schmidt, T.C. & Teutenberg, T. Influence of the Column Inner Diameter on Chromatographic Efficiency in Miniaturized and Conventional Ultra-High-Performance Liquid Chromatography. Chromatographia 86, 143–151 (2023). https://doi.org/10.1007/s10337-023-04237-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-023-04237-4

Keywords

Navigation