Skip to main content
Log in

Three-dimensional Representation Method Using Pressure, Time, and Number of Theoretical Plates to Analyze Separation Conditions in HPLC Columns

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

There has been considerable discussion of the speed performance of HPLC separation, especially regarding the relationship between theoretical plates and hold-up time. The fundamental discussion focuses on the optimal velocity, u0,opt, which gives a minimal height equivalent to a theoretical plate of the van Deemter plot. On the other hand, Desmet’s method, using the kinetic performance limit (KPL), calculates the highest performance with a constant pressure drop, without focusing solely on the optimal velocity. In this paper, a precise method based on the KPL is proposed, to understand how increasing pressure enhances both theoretical plates and hold-up time. A three-dimensional representation method that combines the pressure drop with two axes of time and theoretical plates will be useful for discussing the effect of pressure in pressure-driven chromatography. Using three dimensions, the methods based on u0,opt and the KPL can be combined, because u0,opt can be visualized three-dimensionally, including the neighbor of u0,opt; and the question of whether the KPL is an asymptotic or effective limit can be investigated. Three performances of high resolution, high speed, and low pressure can be understood on different packing supports at a glance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tanaka and D. V. McCalley, Anal. Chem., 2016, 88, 279.

    Article  CAS  PubMed  Google Scholar 

  2. Siswoyo, L.W. Lim, and T. Takeuchi, Anal. Sci., 2012, 28, 107.

    Article  CAS  PubMed  Google Scholar 

  3. K. Todoroki, T. Nakano, H. Watanabe, J. Z. Min, K. Inoue, Y. Ishikawa, and T. Toyo’oka, Anal. Sci., 2014, 30, 865.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Song, K. Takatsuki, T. Sekiguchi, T. Funatsu, S. Shoji, and, M. Tsunoda, Chromatography, 2016, 37, 111.

    Article  CAS  Google Scholar 

  5. C. Okamoto, H. Yoshida, A. Nakayama, S. Kikuchi, N. Ono, H. Miyano, Y. Ino, N. Hiraoka, and T. Mizukoshi, Chromatography, 2016, 37, 125.

    Article  CAS  Google Scholar 

  6. H. Kobayashi, M. Sukegawa, K. Fujimura, T. Kubo, and K. Otsuka, Chromatography, 2016, 37, 133.

    Article  CAS  Google Scholar 

  7. T. Toyo’oka, Anal. Sci., 2017, 33, 555.

    Article  PubMed  Google Scholar 

  8. A. Morikawa, H. Fukuoka, K. Uezono, M. Mita, S. Koyanagi, S. Ohdo, K. Zaitsu, and K. Hamase, Chromatography, 2017, 38, 53.

    Article  CAS  Google Scholar 

  9. K. Nojima, M. Niitsu, Y. Kurosawa, T. Izawa, K. Nakayama, and Hisaaki Itoh, Chromatography, 2017, 38, 73.

    Article  CAS  Google Scholar 

  10. Y. Nagatomo, S. Hashimoto, Y. Kishimoto, T. Hayakawa, S. Yamamoto, M. Kinoshita, and S. Suzuki, Chromatography, 2017, 38, 23.

    Article  CAS  Google Scholar 

  11. M. Otsubo, T. Motono, S. Kitagawa, and H. Ohtani, Chromatography, 2017, 38, 31.

    Article  CAS  Google Scholar 

  12. J. H. Knox and M. Saleem, J. Chromatogr. Sci., 1969, 7, 614.

    Article  CAS  Google Scholar 

  13. M. Martin, C. Eon, and G. Guiochon, J. Chromatogr., 1974, 99, 357.

    Article  CAS  Google Scholar 

  14. P. W. Carr, X. Wang, and D. R. Stoll, Anal. Chem., 2009, 87, 5342.

    Article  Google Scholar 

  15. A. J. Matula and P. W. Carr, Anal. Chem., 2015, 87, 6578.

    Article  CAS  PubMed  Google Scholar 

  16. H. Kobayashi, T. Ikegami, H. Kimura, T. Hara, D. Tokuda, and N. Tanaka, Anal. Sci., 2006, 22, 491.

    Article  CAS  PubMed  Google Scholar 

  17. K. Miyabe and Y. Murata, Anal. Sci., 2014, 30, 277.

    Article  CAS  PubMed  Google Scholar 

  18. S. Jespers, K. Broeckhoven, and G. Desmet, LCGC Europe, 2017, 30, 284.

    CAS  Google Scholar 

  19. A. A. Kurganov, A.Y. Kanat’eva, E. E. Yakubenko, T. P. Popova, and V. E. Shiryaeva, Russ. J. Phys. Chem. A, 2017, 97, 182.

    Article  Google Scholar 

  20. S. R. Groskreutz and S. G. Weber, Anal. Chem., 2016, 88, 11742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. Lambert, S. Miyazaki, M. Ohira, N. Tanaka, and A. Felinger, J. Chromatogr. A, 2016, 7473, 99.

    Article  Google Scholar 

  22. O. H. Ismail, M. Catani, L. Pasti, A. Cavazzini, A. Ciogli, C. Villani, D. Kotoni, F. Gasparrini, and D. S. Bell, J. Chromatogr. A, 2016, 7454, 86.

    Article  Google Scholar 

  23. A. Kurganov, A. Kanateva, and E. Yakubenko, J. Sep. Sci., 2016, 39, 162.

    Article  CAS  PubMed  Google Scholar 

  24. A. Andres, K. Broeckhoven, and G. Desmet, Anal. Chim. Acta, 2015, 894, 20.

    Article  CAS  PubMed  Google Scholar 

  25. S. Fekete, J. L. Veuthey, and D. Guillarme, J. Chromatogr. A, 2015, 1408, 1.

    Article  CAS  PubMed  Google Scholar 

  26. K. Miyabe, Anal. Sci., 2009, 25, 219.

    Article  CAS  PubMed  Google Scholar 

  27. K. Miyabe, Anal. Sci., 2011, 27, 1007.

    Article  CAS  PubMed  Google Scholar 

  28. G. Desmet, D. Clicq, and P. Gzil, Anal. Chem., 2005, 77, 4058.

    Article  CAS  PubMed  Google Scholar 

  29. P. A. Bristow and J. H. Knox, Chromatographia, 1977, 10, 279.

    Article  CAS  Google Scholar 

  30. H. Poppe, J. Chromatogr. A, 1997, 778, 3.

    Article  CAS  Google Scholar 

  31. J. J. van Deemter, F. J. Zuiderweg, and A. Klinkenberg, Chem. Eng. Sci., 1956, 5, 271.

    Article  Google Scholar 

  32. G. Desmet, D. Cabooter, and K. Broeckhoven, Anal. Chem., 2015, 87, 8593.

    Article  CAS  PubMed  Google Scholar 

  33. M. Ito and K. Shimizu, W.O. Patent Application, 2014, 030537.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hiroyoshi Minakuchi, President of Kyoto Monotech Co., Ltd., for his assistance regarding the study’s monolithic column.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Ito.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, M., Shimizu, K. & Nakatani, K. Three-dimensional Representation Method Using Pressure, Time, and Number of Theoretical Plates to Analyze Separation Conditions in HPLC Columns. ANAL. SCI. 34, 137–142 (2018). https://doi.org/10.2116/analsci.34.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.137

Keywords

Navigation