Skip to main content
Log in

Preparation and Characterization of Silanized Cardboard via Inverse Gas Chromatography and Complementary Analytical Techniques

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Three silanized cardboard samples, MeSi-CB, Me2Si-CB, and MePhSi-CB were prepared by reacting bare cardboard with chlorosilanes with different substituents, trichloromethylsilane (TCMS), dichlorodimethylsilane (DCDMS), and dichloromethylphenylsilane (DCMPS), respectively, in toluene. Fourier transform infrared spectroscopy confirmed the formation of siloxane condensation in the silanized cardboard samples. Silicon content, specific surface area (SSA), and pore volume measurements indicated that TCMS was a more efficient silanizing agent for producing highly branched siloxane networks on cardboard than DCDMS and DCMPS. Inverse gas chromatography (IGC) was used to measure the molar adsorption enthalpy (∆Hm) of various hydrocarbons, dispersive surface energy (\({\gamma }_{\mathrm{s}}^{\mathrm{dis}}\)), and acid–base properties of the silanized cardboard samples. IGC data showed that the \({\gamma }_{\mathrm{s}}^{\mathrm{dis}}\) of the silanized cardboard samples increased due to the formation of siloxane condensation and the reduction of hydroxyl groups. In addition, the increase in the \({\gamma }_{\mathrm{s}}^{\mathrm{dis}}\) also resulted from siloxane cross-linking and the formation of highly branched siloxane networks with increased SSA, which led to a “double field effect” via simultaneous interactions with adsorbed hydrocarbons. This was particularly noticeable in MeSi-CB, in which silanization was conducted using TCMS with three condensation sites. The SSA and \({\gamma }_{\mathrm{s}}^{\mathrm{dis}}\) of MeSi-CB significantly increased and the ∆Hm of the hydrocarbons decreased after silanization. However, the SSA, \({\gamma }_{\mathrm{s}}^{\mathrm{dis}}\), and ∆Hm of the hydrocarbons of Me2Si-CB and MePhSi-CB did not change much presumably because both DCDMS and DCMPS contain two condensation sites and were less effective in siloxane cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peretz R, Mamane H, Wissotzky E, Sterenzon E, Gerchman Y (2021) Waste Biomass Valor 12:1599–1608

    Article  CAS  Google Scholar 

  2. Delgado B, González DL, Godbout S, Lagacé R, Giroir-Fendler A, Ramirez AA (2017) Sci Total Environ 593–594:406–417

    Article  PubMed  CAS  Google Scholar 

  3. Liu J, Wang X (2019) BioResources 14:3886–3898

    Article  CAS  Google Scholar 

  4. Hokkanen S, Bhatnagar A, Sillanpää M (2016) Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  5. Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Bioresour Technol 216:1066–1076

    Article  CAS  PubMed  Google Scholar 

  6. Deghles A, Hamed O, Aza M, Abu Lail B, Azzaoui K, Abu Obied A, Jodeh S (2019) BioResources 14:6247–6266

    Article  CAS  Google Scholar 

  7. Yue X, Huang J, Jiang F, Lin H, Chen Y (2019) J Eng Fibers Fabr 14:1–10

    Google Scholar 

  8. Han J, Zhang G, Zhou L, Zhan F, Cai D, Wu Z (2018) Langmuir 34:5955–5963

    Article  CAS  PubMed  Google Scholar 

  9. Guogui Shi G, Wu M, Zhong Q, Mu P, Li J (2021) Langmuir 37:7843–7850

    Article  CAS  Google Scholar 

  10. Kim J (2021) Chromatographia 84:875–887

    Article  CAS  Google Scholar 

  11. Ding Z, Xu X, Phan T, Hu X (2018) Pol J Environ Stud 27:2483–2491

    Article  CAS  Google Scholar 

  12. Nowicki P, Supłat M, Przepiórski J, Pietrzak R (2012) Chem Eng J 195–196:7–14

    Article  CAS  Google Scholar 

  13. Sato K, Zaini MAA, Amano Y, Machida M (2018) J Environ Chem 28:157–161

    Article  CAS  Google Scholar 

  14. Xie S, Suuberg E (2022) J Chromatogr A 1669:462926

    Article  CAS  PubMed  Google Scholar 

  15. Meeks OR, Rybolt TR (1997) J Colloid Interf Sci 196:103–109

    Article  CAS  Google Scholar 

  16. Frauenhofer E, Cho J, Yu J, Al-Saigh ZY, Kim J (2019) J Chromatogr A 1594:149–159

    Article  CAS  PubMed  Google Scholar 

  17. Pérez-Mendoza M, Almazán-Almazán MC, Méndez-Liñán L, Domingo-García M, López-Garzón FJ (2008) J Chromatogr A 1214:121–127

    Article  PubMed  CAS  Google Scholar 

  18. Strzemiecka B, Voelkel A, Donate-Robles J, Martín-Martínez JM (2014) Appl Surf Sci 316:315–323

    Article  CAS  Google Scholar 

  19. Huang S-C, Chung T-W, Wu H-T (2021) ACS Omega 6:5825–5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J (2020) Sep Purif Technol 235:116213

    Article  CAS  Google Scholar 

  21. Rehman A, Park M, Park S-J (2019) Coatings 9:103

    Article  CAS  Google Scholar 

  22. Kwon S, Vidic R, Borguet E (2003) Surf Sci 522:17–26

    Article  CAS  Google Scholar 

  23. Grajek H, Witkiewicz Z (2002) J Chromatogr A 969:87–92

    Article  CAS  PubMed  Google Scholar 

  24. Urita C, Urita K, Araki T, Horio K, Yoshida M, Moriguchi I (2019) J Colloid Interf Sci 552:412–417

    Article  CAS  Google Scholar 

  25. Heo JW, An L, Chen J, Bae JH, Kim YS (2020) Chemosphere 295:133815

    Article  CAS  Google Scholar 

  26. Frank BP, Durkin DP, Caudill ER, Zhu L, White DH, Curry ML, Pedersen JA, Fairbrother DH (2018) ACS Appl Nano Mater 1:7025–7038

    Article  CAS  Google Scholar 

  27. Makowski T (2020) Cellulose 27:1–9

    Article  CAS  Google Scholar 

  28. Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RM, Lange H, Thuo MM, Whitesides GM (2013) Adv Funct Mater 24:60–70

    Article  CAS  Google Scholar 

  29. Gamelas JAF, Azpeitia M, Ferreira PJ, Tejado A (2018) J Wood Chem Technol 38:264–275

    Article  CAS  Google Scholar 

  30. Gamelas JAF, Salvador A, Hidalgo J, Ferreira PJ, Tejado A (2017) Langmuir 33:927–935

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Seidler P, Fill C, Wan L-S (2008) Surf Sci 602:3323–3330

    Article  CAS  Google Scholar 

  32. Brzoska JB, Azouz IB, Rondelez F (1994) Langmuir 10:4367–4373

    Article  CAS  Google Scholar 

  33. Rückriem M, Inayat A, Enke D, Gläser R, Einicke W-D, Rockmann R (2010) Colloids Surf A Physicochem Eng Asp 357:21–26

    Article  CAS  Google Scholar 

  34. Kim J, Seidler P, Wan L-S, Fill C (2009) J Colloid Interf Sci 329:114–119

    Article  CAS  Google Scholar 

  35. Steinbrück N, Pohl S, Kickelbick G (2019) RSC Adv 9:2205–2216

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim J, Holinga GH, Somorjai GA (2011) Langmuir 27:5171–5175

    Article  CAS  PubMed  Google Scholar 

  37. Hamieh T (2020) J Chromatogr A 1627:461372

    Article  CAS  PubMed  Google Scholar 

  38. Gholami F, Tomas M, Gholami Z, Mirzaei S, Vakili M (2020) Electrochem 1:367–387

    Article  Google Scholar 

  39. Ho R, Heng JYY (2013) KONA Powder Part J 30:164–180

    Article  CAS  Google Scholar 

  40. Shi B, Wang Y, Jia L (2011) J Chromatogr A 1218:860–862

    Article  CAS  PubMed  Google Scholar 

  41. Gamelas JAF (2013) Cellulose 20:2675–2693

    Article  CAS  Google Scholar 

  42. Yampolskii Y, Belov N (2015) Macromolecules 48:6751–6767

    Article  CAS  Google Scholar 

  43. Kim J, Qian W, Al-Saigh Z (2011) Surf Sci 605:419–423

    Article  CAS  Google Scholar 

  44. Frauenhofer E, Cimmerer C, Yu J, Al-Saigh ZY, Kim J (2021) J Chromatogr A 1639:461894

    Article  CAS  PubMed  Google Scholar 

  45. Kim J, Cho J, Schmitz M, Al-Saigh Z (2018) Forensic Chem 11:7–14

    Article  CAS  Google Scholar 

  46. Dorris GM, Gray DG (1980) J Colloid Interf Sci 77:353–362

    Article  CAS  Google Scholar 

  47. Fowkes FM (1964) Ind Eng Chem 56:40–52

    Article  CAS  Google Scholar 

  48. Gutmann V (1978) The donor-acceptor approach to molecular interactions. Plenum, New York

    Book  Google Scholar 

  49. Shi B (2019) J Chromatogr A 1601:385–387

    Article  CAS  PubMed  Google Scholar 

  50. Schultz J, Lavielle L, Martin C (1987) J Adhes 23:45–60

    Article  CAS  Google Scholar 

  51. Hamieh T (2018) J Chromatogr A 1568:168–176

    Article  CAS  PubMed  Google Scholar 

  52. Jasper JJ (1972) J Phys Chem Ref Data 1:841–1009

    Article  CAS  Google Scholar 

  53. Hamieh T, Schultz J (2002) J Chromatogr A 969:17–25

    Article  CAS  PubMed  Google Scholar 

  54. Hamieh T, Fadlallah M-B, Schultz J (2002) J Chromatogr A 969:37–47

    Article  CAS  PubMed  Google Scholar 

  55. Swierczynski MJ, Grau K, Schmitz M, Kim J (2020) J Anal Chem 75:44–55

    Article  CAS  Google Scholar 

  56. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  57. Abidi N, Cabrales L, Haigler CH (2014) Carbohydr Polym 100:9–16

    Article  CAS  PubMed  Google Scholar 

  58. Kubovský I, Kačíková D, Kačík F (2020) Polymers 12:485

    Article  PubMed Central  CAS  Google Scholar 

  59. Launer PJ, Arkles B (2013) Infrared analysis of organsilicon compounds: spectra-structure correlations. In: Arkles B, Larson GL (eds) Silicon compounds: silanes and silicones. Gelest Inc., Morrisville, pp 177–180

    Google Scholar 

  60. Faniran JA, Shurvell HF (1968) Can J Chem 46:2089–2095

    Article  CAS  Google Scholar 

  61. Radziszewski JG, Nimlos MR, Winter PR, Ellison GB (1996) J Am Chem Soc 118:7400–7401

    Article  CAS  Google Scholar 

  62. Chollon G, Langlais F, Placide M, Weisbecker P (2012) Thin Solid Films 520:6075–6087

    Article  CAS  Google Scholar 

  63. Wang X, Sotoudehniakarani F, Yu Z, Morrell JJ, Cappellazzi J, McDonald AG (2019) Polym Degrad Stab 168:108955

    Article  CAS  Google Scholar 

  64. Kansara AM, Aswal VK, Singh PS (2015) RSC Adv 5:51608–51620

    Article  CAS  Google Scholar 

  65. Gou Y, Tong X, Zhang Q, Wang H, Wang B, Xie S, Wang Y (2015) J Mater Sci 50:7975–7984

    Article  CAS  Google Scholar 

  66. Feng X-S, Taton D, Chaikof EL, Gnanou Y (2005) J Am Chem Soc 127:10956–10966

    Article  CAS  PubMed  Google Scholar 

  67. Geyer F, D’Acunzi M, Yang C-Y, Müller M, Baumli P, Kaltbeitzel A, Mailänder V, Encinas N, Vollmer D, Butt H-J (2019) Adv Mater 31:1801324

    Article  CAS  Google Scholar 

  68. Santos JMRCA, Gil MH, Portugal A, Guthrie JT (2001) Cellulose 8:217–224

    Article  CAS  Google Scholar 

  69. Legras A, Kondor A, Alcock M, Heitzmann MT, Truss RW (2017) Cellulose 24:4691–4700

    Article  CAS  Google Scholar 

  70. Rjiba N, Nardin M, Dréan J-Y, Frydrych R (2007) J Colloid Interf Sci 314:373–380

    Article  CAS  Google Scholar 

  71. Cossarutto L, Vagner C, Finqueneisel G, Weber JV, Zimny T (2001) Appl Surf Sci 177:207–211

    Article  CAS  Google Scholar 

  72. Donnet JB, Wang TK, Li YJ, Balard H, Burns GT (2000) Rubber Chem Technol 73:634–646

    Article  CAS  Google Scholar 

  73. Khalfi A, Papirer E, Balard H, Barthel H, Heinemann MG (1996) J Colloid Interf Sci 184:586–593

    Article  CAS  Google Scholar 

  74. Mészáros B, Járvás G, Hajba L, Szigeti M, Dallos A, Guttman A (2018) Sens Actuat B Chem 258:1184–1190

    Article  CAS  Google Scholar 

  75. Kim J, Chou KC, Somorjai GA (2003) J Phys Chem B 107:1592–1596

    Article  CAS  Google Scholar 

  76. Kim J, Opdahl A, Chou KC, Somorjai GA (2003) Langmuir 19:9551–9553

    Article  CAS  Google Scholar 

  77. Kim J, Cho J, Seidler P, Kurland NE, Yadavalli VK (2010) Langmuir 26:2599–2608

    Article  CAS  PubMed  Google Scholar 

  78. Reichardt C (1979) Angew Chem Int Ed 18:98–110

    Article  Google Scholar 

  79. Budi A, Stipp SLS, Andersson MP (2018) J Phys Chem C 122:8236–8243

    Article  CAS  Google Scholar 

  80. Hoory SE, Prausnitz JM (1967) Trans Faraday Soc 63:455–460

    Article  CAS  Google Scholar 

  81. Gaberle J, Gao DZ, Watkins MB, Shluger AL (2016) J Phys Chem C 120:3913–3921

    Article  CAS  Google Scholar 

  82. NIST Standard Reference Database Number 69, https://webbook.nist.gov/chemistry/ Accessed Mar 2022

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonyeong Kim.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest regarding the publication of this article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J. Preparation and Characterization of Silanized Cardboard via Inverse Gas Chromatography and Complementary Analytical Techniques. Chromatographia 85, 797–807 (2022). https://doi.org/10.1007/s10337-022-04174-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04174-8

Keywords

Navigation