Skip to main content

Advertisement

Log in

Multivariate Optimization and Validation of HPLC Method for Determination of Spiramycin I in Tablets

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Spiramycin (SPY) is an antibiotic belonging to the class of macrolides. Its main structurally related components are SPY I, SPY II and SPY III. The aim of this work was to optimize and validate a simple and fast method of quantification of SPY I in tablets in the presence of SPYs II and III by HPLC based on multivariate approach. Initially, different conditions were tested by means of a complete factorial design 23. Afterward, the chromatographic parameters were optimized using the Doehlert Matrix and response surface methodology, which allowed to obtain an efficient separation for SPY I with relatively short retention time (16 min). The new method was validated using phosphoric acid 0.1% and methanol (67:33, v/v) as mobile phase, flow rate at 1.0 mL min−1, C8 column (250 mm × 4.6 mm × 5 µm) as stationary phase and UV detection at 232 nm. The method proved to be selective, linear, accurate, with good reproducibility, robust, useful, simple, and efficient for the quantification of SPY I in pharmaceutical tablets. Thus, multivariate approach proved to be an excellent strategy for method optimization with a reduced number of experiments without the need for additional cost with expensive equipment or chromatographic columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from references [1, 6, 7, 8, 22]). DSPM = deoxydehydrospiramycin; MSPM = Methylenespiramycin

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Council of Europe (2017) European pharmacopeia, 6th edn. Council of Europe, Strasbourg

    Google Scholar 

  2. Mourier P, Brun A (1997) Study of the metabolism of spiramycin in pig liver. J Chromatogr B. https://doi.org/10.1016/S0378-4347(97)00477-5

    Article  Google Scholar 

  3. Horie M, Saito K, Hoshino Y, Nakazawa H, Nose N (1988) Determination of spiramycin components in pharmaceutical preparations by HPLC. Bunseki Kagaku. https://doi.org/10.2116/bunsekikagaku.37.11_580

    Article  Google Scholar 

  4. Sagan C, Salvador A, Dubreuil D, Poulet PP, Duffaut D, Brumpt I (2005) Simultaneous determination of metronidazole and spiramycin I in human plasma, saliva and gingival crevicular fluid by LC–MS/MS. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2004.12.033

    Article  PubMed  Google Scholar 

  5. Lin Q, Kahsay G, de Wall T, Zhu P, Tam M, Teughels R, Wang W, Van Schepdael AV, Adams E (2018) Improved liquid chromatographic method for quality control of Spiramycin using superficially porous particles. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2017.10.041

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu L, Roets E, Hoogmartens J (1997) Liquid chromatography of spiramycin on poly(styrene-divinylbenzene). J Chromatogr A. https://doi.org/10.1016/S0021-9673(96)00876-X

    Article  PubMed  Google Scholar 

  7. Chepkwony HK, Vermaelen A, Roets E, Hoogmartens J (2001) Development and validation of a reversed-phase liquid chromatographic method for analysis of spiramycin and related substances. Chromatogr. https://doi.org/10.1007/BF02491832

    Article  Google Scholar 

  8. National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 5289394, Spiramycin. https://pubchem.ncbi.nlm.nih.gov/compound/Spiramycin. Accessed 29 Nov 2021

  9. Avci ME, Arslan F, Çiftçi S, Ekiz A, Tüten A, Yildirim G, Madazli R (2016) Role of spiramycin in prevention of fetal toxoplasmosis. J Matern Fetal Neonatal Med. https://doi.org/10.3109/14767058.2015.1074998

    Article  PubMed  Google Scholar 

  10. Chambers HF, Mac-Dougall C (2017) Protein synthesis inhibitors and miscellaneous antibacterial agents. In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) Goodman & Gilman’s: The pharmacological basis of therapeutics, 13th edn. McGraw-Hill Education, New York

    Google Scholar 

  11. Calcagnile M, Bettini S, Damiano F, Talà A, Tredici SM, Pagano R, Di Salvo M, Siculella L, Fico D, De Benedetto GE, Valli L, Alifano P (2018) Stimulatory effects of methyl-β-cyclodextrin on spiramycin production and physical–chemical characterization of nonhost@guest complexes. ACS Omega. https://doi.org/10.1021/acsomega.7b01766

    Article  PubMed  PubMed Central  Google Scholar 

  12. Poulsen SM, Kofoed C, Vester B (2000) Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, Spiramycin and tylosin. J Mol Biol. https://doi.org/10.1006/jmbi.2000.4229

    Article  PubMed  Google Scholar 

  13. Golan DE, Tashjian Junior AH, Armstrong EJ, Armstrong AW (2009) Princípios de farmacologia: A base fisiopatológica da farmacoterapia, 2nd edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  14. Brunton LL, Chabner BA, Knollmann BC (2012) As Bases Farmacológicas da Terapêutica de Goodman & Gilman, 12th edn. McGraw-Hill Education, New York

    Google Scholar 

  15. Pendela M, Govaerts C, Diana J, Hoogmartens J, Van Schepdael A, Adams E (2007) Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.2868

    Article  PubMed  Google Scholar 

  16. Civitareale C, Fiori M, Ballerini A, Brambilla G (2004) Identification and quantification method of spiramycin and tylosin in feeding stuffs with HPLC-UV/DAD at 1 ppm level. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2004.06.010

    Article  PubMed  Google Scholar 

  17. García-Mayor MA, Garcinuño RM, Fernández-Hernando P, Durand-Alegría JS (2006) Liquid chromatography-UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep’s milk. J Chromatogr A. https://doi.org/10.1016/j.chroma.2006.04.019

    Article  PubMed  Google Scholar 

  18. Wang J, Leung D (2009) Determination of spiramycin and neospiramycin antibiotic residues in raw milk using LC/ESI-MS/MS and solid-phase extraction. J Sep Sci. https://doi.org/10.1016/j.chroma.2006.04.019

    Article  PubMed  Google Scholar 

  19. García Mayor MA, Paniagua González G, Garcinuño Martínez RM, Fernández Hernando P, Durand Alegría JS (2017) Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk. Food Chem. https://doi.org/10.1016/j.foodchem.2016.11.114

    Article  PubMed  Google Scholar 

  20. Zhou W, Ling Y, Liu T, Zhang Y, Li J, Li H, Wu W, Jiang S, Feng F, Yuan F, Zhang F (2017) Simultaneous determination of 16 macrolide antibiotics and 4 metabolites in milk by using Quick, Easy, Cheap, Effective, Rugged, and Safe extraction (QuEChERS) and high performance liquid chromatography tandem mass spectrometry. J Chromatogr B. https://doi.org/10.1016/j.jchromb.2017.07.046

    Article  Google Scholar 

  21. Decheng S, Peilong W, Yang L, Ruiguo W, Shulin W, Zhiming X, Su Z (2018) Simultaneous determination of antibiotics and amantadines in animal-derived feedstuffs by ultraperformance liquid chromatographic-tandem mass spectrometry. J Chromatogr B. https://doi.org/10.1016/j.jchromb.2018.07.025

    Article  Google Scholar 

  22. Liu H, Lin T, Lin X, Shao J, Li Q (2018) QuEChERS with magnetic hydrophilic-lipophilic balanced adsorbent and its application in multi-class veterinary residues in milk by ultra high-performance liquid chromatography-tandem mass spectrometry. Chromatogr. https://doi.org/10.1007/s10337-017-3433-9

    Article  Google Scholar 

  23. Dow J, Lemar M, Frydman A, Gaillot J (1985) Automated high-performance liquid chromatographic determination of spiramycin by direct injection of plasma, using column-switching for sample clean-up. J Chromatogr B. https://doi.org/10.1016/s0378-4347(00)82028-9

    Article  Google Scholar 

  24. Carlhant D, Le Bot MA, Guedes Y, Riche C, Mimouri F, Colin J, Berthou F (1989) Solid phase extraction and HPLC determination of spiramycin in plasma and vitreous concentrations. Biomed Chromatogr. https://doi.org/10.1002/bmc.1130030102

    Article  PubMed  Google Scholar 

  25. Elkhoudary MM, Abdel Salam RA, Hadad GM (2016) Development and Optimization of HPLC analysis of metronidazole, diloxanide, spiramycin and clioquinol in pharmaceutical dosage forms using experimental design. J Chrom Sci. https://doi.org/10.1093/chromsci/bmw126

    Article  Google Scholar 

  26. Maher HM, Youssef RM (2009) Development of validated chromatographic methods for the simultaneous determination of metronidazole and spiramycin in tablets. Chromatographia. https://doi.org/10.1365/s10337-008-0865-2

    Article  Google Scholar 

  27. Katsidzira RM, Wessels A, Aucamp M (2016) A novel RP-HPLC method for the detection and quantification of clarithromycin or spiramycin in bulk drug samples and dosage forms. Int J Pharm Pharm Sci. https://doi.org/10.22159/ijpps.2016v8i12.15058

  28. Mahmoudi A, de Francia S, Boukhechem MS, Pirro S (2016) Quantification of three macrolide antibiotics in pharmaceutical lots by HPLC: development, validation and application to a simultaneous separation. Br J Pharm. https://doi.org/10.5920/bjpharm.2016.03

    Article  Google Scholar 

  29. Ferreira SLC, Dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Doehlert matrix: a chemometric tool for analytical chemistry-review. Talanta. https://doi.org/10.1016/j.talanta.2004.01.015

    Article  PubMed  Google Scholar 

  30. Montgomery DC, Myers RH (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New York

    Google Scholar 

  31. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol. https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  32. Validation of analytical procedures: text and methodology Q2(R1) (2005) International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH). https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf. Accessed 29 Nov 2021

  33. Analytical procedures and methods validation for drugs and biologics (2015) Food and Drug Administration (FDA). https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf. Accessed 29 Nov 2021

  34. Resolution of the collegiate board – RDC N° 166. Providing for the validation of analytical methods and other provisions (2017) The Brazilian Health Regulatory Agency (ANVISA). http://antigo.anvisa.gov.br/documents/10181/2721567/RDC_166_2017_COMP.pdf/d5fb92b3-6c6b-4130-8670-4e3263763401. Accessed 29 Nov 2021

  35. National Formulary (2017) The United States Pharmacopeia, 37th edn. Rockville, The National Formulary

    Google Scholar 

  36. Youden WJ, Steiner EH (1975) Statistical manual of AOAC. Association of Official Analytical Chemistry, Washington

    Google Scholar 

  37. Faria AM, Jardim ICSF, Collins CH (2009) Effects of different high pH solutions on the chemical stability of immobilized-polymer stationary phases. J Chromatogr Sci. https://doi.org/10.1093/chromsci/47.9.734

    Article  PubMed  Google Scholar 

  38. Claessens HA, Van Straten MA, Kirkland JJ (1996) Effect of buffers on silica-based column stability in revesed-phase high-performance liquid chromatography. J Chromatogr A. https://doi.org/10.1016/0021-9673(95)00904-3

    Article  Google Scholar 

  39. Gomes KA. Santos ALR, Faria AM (2020) Avaliação de aditivos de fase móvel e temperatura na vida útil de colunas para cromatografia líquida de alta eficiência. Quím Nova. https://doi.org/10.21577/0100-4042.20170482

  40. Teófilo RF, Ferreira MMC (2006) Quimiometria II: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial. Quím Nova. https://doi.org/10.1590/S0100-40422006000200026

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. The authors thank FAPEMIG for the financial support and are also grateful to the Federal University of Alfenas (Unifal-MG) and the Laboratory for Quality Control (NCQ) for the technical support and resources made available to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy Bonfilio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, R.A., dos Santos, L.A., de Araújo, M.B. et al. Multivariate Optimization and Validation of HPLC Method for Determination of Spiramycin I in Tablets. Chromatographia 85, 421–431 (2022). https://doi.org/10.1007/s10337-022-04153-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04153-z

Keywords

Navigation