Skip to main content
Log in

Multi-residue Methodologies for the Analysis of Non-polar Pesticides in Water and Sediment Matrices by GC–MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A multi-residue method for the analysis of non-polar pesticides by GC–MS/MS in water and sediment matrices has been successfully developed, including 33 and 27 compounds, respectively. Water analysis method is based on a classic liquid–liquid extraction with recoveries ranging between 39 and 102%, with RSDs lower than 13%, LODs of 0.42–15.2 ng L−1 and LOQs of 0.72–50.8 ng L−1. Sediment analysis method is based on a pressurized liquid extraction with recoveries ranging between 37 and 133%, RSDs lower than 18%, LODs of 0.01–0.16 ng g−1 dry weigth (dw) and LOQs of 0.02–0.54 ng g−1 dw. Reported LODs were lower than the maximum acceptable detection limits set by the EU Watch Lists for selected pesticides. Applicability of both methodologies has been evaluated in real water and sediment samples collected in Catalonian river basins reporting oxadiazon for the first time in sediments from Catalonian river basins with a range of n.d. to 382 ng g−1 dw and a mean concentration of 44.0 ng g−1 dw. The importance of the simultaneous evaluation of both water and sediment has been emphasised since ten out of the 15 detected pesticides in the sediments can pose a high risk to aquatic organisms according to the Risk Quotient (RQ) method. Further detailed work needs to be done to better understand and assess the environmental impact of pesticide-contaminated sediments on aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ccanccapa A, Masiá A, Navarro-Ortega A, Picó Y, Barceló D (2016) Pesticides in the Ebro River basin: occurrence and risk assessment. Environ Pollut 211:414–424. https://doi.org/10.1016/j.envpol.2015.12.059

    Article  CAS  PubMed  Google Scholar 

  2. Ongley ED (1996) Pesticides as water pollutants. In: Control of water pollution from agriculture. Food and Agriculture Organization of the United Nations, Rome, pp 53–67. ISBN: 92-5-103875-9

  3. EC (2013) DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L 226:1–17. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32013L0039

    Google Scholar 

  4. EC (2018) COMMISSION IMPLEMENTING DECISION (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Off J Eur Union L 141:9–12. https://eur-lex.europa.eu/eli/dec_impl/2018/840/oj

    Google Scholar 

  5. Feo ML, Eljarrat E, Barceló D (2011) Performance of gas chromatography/tandem mass spectrometry in the analysis of pyrethroid insecticides in environmental and food samples. Rapid Commun Mass Spectrom 25:869–876. https://doi.org/10.1002/rcm.4936

    Article  CAS  PubMed  Google Scholar 

  6. Mondal R, Mukherjee A, Biswas S, Kole RK (2018) GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: a case study in Hooghly River basin in West Bengal, India. Chemosphere 206:217–230. https://doi.org/10.1016/j.chemosphere.2018.04.168

    Article  CAS  PubMed  Google Scholar 

  7. Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2013) Gas chromatography triple quadrupole mass spectrometry method for monitoring multiclass organic pollutants in Spanish sewage treatment plants effluents. Talanta 111:196–205. https://doi.org/10.1016/j.talanta.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  8. Elbashir AA, Aboul-Enein HY (2018) Application of gas and liquid chromatography coupled to time-of-flight mass spectrometry in pesticides: Multiresidue analysis. Biomed Chromatogr 32:1–7. https://doi.org/10.1002/bmc.4038

    Article  CAS  Google Scholar 

  9. Charalampous AC, Miliadis GE, Koupparis MA (2015) A new multiresidue method for the determination of multiclass pesticides, degradation products and PCBs in water using LC–MS/MS and GC–MS(n) systems. Int J Environ An Ch 95(13):1283–1298. https://doi.org/10.1080/03067319.2015.1100723

    Article  CAS  Google Scholar 

  10. Donato FF, Martins ML, Munaretto JS, Prestes OD, Adaime MB, Zanella R (2015) Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry. J Braz Chem Soc 26(10):2077–2087. https://doi.org/10.5935/0103-5053.20150192

    Article  CAS  Google Scholar 

  11. Terzopoulou E, Voutsa D, Kaklamanos G (2015) A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry. Environ Sci Pollut R 22(2):1095–1112. https://doi.org/10.1007/s11356-014-3397-3

    Article  CAS  Google Scholar 

  12. He P, Aga DS (2019) Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: advantages and pitfalls. Anal Methods 11(11):1436–1448. https://doi.org/10.1039/C8AY02774A

    Article  CAS  Google Scholar 

  13. Cruzeiro C, Pardal MÂ, Rocha E, Rocha MJ (2015) Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon. Portugal Environ Monit Assess 187(11):669. https://doi.org/10.1007/s10661-015-4824-8

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Watts S, Philix MC, Snyder SA, Ong CN (2018) Occurrence and distribution of pesticides in precipitation as revealed by targeted screening through GC-MS/MS. Chemosphere 211:210–217. https://doi.org/10.1016/j.chemosphere.2018.07.151

    Article  CAS  PubMed  Google Scholar 

  15. Pitarch E, Medina C, Portolés T, López FJ, Hernández F (2007) Determination of priority organic micro-pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry. Anal Chim Acta 583:246–258. https://doi.org/10.1016/j.aca.2006.10.012

    Article  CAS  PubMed  Google Scholar 

  16. Mansilha C, Melo A, Rebelo H, Ferreira IMPLVO, Pinho O, Domingues V, Pinho C, Gameiro P (2010) Quantification of endocrine disruptors and pesticides in water by gas chromatography–tandem mass spectrometry. Method validation using weighted linear regression schemes. J Chromatogr A 1217:6681–6691. https://doi.org/10.1016/j.chroma.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Gil L, Romero-González R, Frenich AG, Vidal JLM (2008) Determination of pesticides in water samples by solid phase extraction and gas chromatography tandem mass spectrometry. J Sep Sci 31:151–161. https://doi.org/10.1002/jssc.200700299

    Article  CAS  PubMed  Google Scholar 

  18. Vidal JLM, Espada MCP, Frenich AG, Arrebola FJ (2000) Pesticide trace analysis using solid-phase extraction and gas chromatography with electron-capture and tandem mass spectrometric detection in water samples. J Chromatogr A 867:235–245. https://doi.org/10.1016/S0021-9673(99)01082-1

    Article  Google Scholar 

  19. Pablos-Espada MC, Arrebola-Liébanas FJ, Garrido-frenich A, Martínez-Vidal JL (1999) Analysis of Pesticides in Water Samples Using GC-ECD and GC-MS/MS Techniques. Int J Environ An Ch 75(1–2):165–179. https://doi.org/10.1080/03067319908047309

    Article  CAS  Google Scholar 

  20. Scheyer A, Morville S, Mirabel P, Millet M (2006) Analysis of trace levels of pesticides in rainwater using SPME and GC–tandem mass spectrometry. Anal Bioanal Chem 384:475–487. https://doi.org/10.1007/s00216-005-0176-5

    Article  CAS  PubMed  Google Scholar 

  21. García-Rodríguez D, Carro AM, Lorenzo RA, Fernández F, Cela R (2008) Determination of trace levels of aquaculture chemotherapeutants in seawater samples by SPME-GC-MS/MS. J Sep Sci 31:2882–2890. https://doi.org/10.1002/jssc.200800268

    Article  CAS  PubMed  Google Scholar 

  22. Sauret-Szczepanski N, Mirabel P, Wortham H (2006) Development of an SPME-GC-MS/MS method for the determination of pesticides in rainwater: laboratory and field experiments. Environ Pollut 139:133–142. https://doi.org/10.1016/j.envpol.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  23. Perreau F, Einhorn J (2006) Determination of frequently detected herbicides in water by solid-phase microextraction and gas chromatography coupled to ion-trap tandem mass spectrometry. Anal Bioanal Chem 386:1449–1456. https://doi.org/10.1007/s00216-006-0693-x

    Article  CAS  PubMed  Google Scholar 

  24. Gonçalves C, Alpendurada MF (2004) Solid-phase micro-extraction–gas chromatography–(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities. J Chromatogr A 1026:239–250. https://doi.org/10.1016/j.chroma.2003.10.117

    Article  CAS  PubMed  Google Scholar 

  25. Frenich AG, Romero-González R, Vidal JLM, Ocaña RM, Feria PB (2011) Comparison of solid phase microextraction and hollow fiber liquid phase microextraction for the determination of pesticides in aqueous samples by gas chromatography triple quadrupole tandem mass spectrometry. Anal Bioanal Chem 399:2043–2059. https://doi.org/10.1007/s00216-010-4236-0

    Article  CAS  Google Scholar 

  26. Pintado-Herrera MG, González-Mazo E, Lara-Martín PA (2016) In-cell clean-up pressurized liquid extraction and gas chromatography–tandem mass spectrometry determination of hydrophobic persistent and emerging organic pollutants in coastal sediments. J Chromatogr A 1429:107–118. https://doi.org/10.1016/j.chroma.2015.12.040

    Article  CAS  PubMed  Google Scholar 

  27. Camino-Sánchez FJ, Zafra-Gómez A, Pérez-Trujillo JP, Conde-González JE, Marques JC, Vílchez JL (2011) Validation of a GC–MS/MS method for simultaneous determination of 86 persistent organic pollutants in marine sediments by pressurized liquid extraction followed by stir bar sorptive extraction. Chemosphere 84:869–881. https://doi.org/10.1016/j.chemosphere.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  28. Martínez-Lara JM, Melo MIP (2017) Diseño De Experimentos Aplicado En La Optimización Del Método De Extracción QuEChERS Para La Determinación De Plaguicidas Organoclorados Y Organofosforados En Suelos. Rev Int Contam Ambie 33(4):559–573. https://doi.org/10.20937/rica.2017.33.04.02

    Article  Google Scholar 

  29. Łozowicka B, Rutkowska E, Jankowska M (2017) Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ Sci Pollut Res 24:7124–7138. https://doi.org/10.1007/s11356-016-8334-1

    Article  CAS  Google Scholar 

  30. Fernandes VC, Domingues VF, Mateus N, Delerue-Matos C (2013) Multiresidue pesticides analysis in soils using modified QuEChERS with disposable pipette extraction and dispersive solid-phase extraction. J Sep Sci 36:376–382. https://doi.org/10.1002/jssc.201200673

    Article  CAS  PubMed  Google Scholar 

  31. Yu Y, Liu X, He Z, Wang L, Luo M, Peng Y, Zhou Q (2016) Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal Methods 8:2463–2470. https://doi.org/10.1039/C6AY00337K

    Article  CAS  Google Scholar 

  32. Zhang H, Bayen S, Kelly BC (2015) Co-extraction and simultaneous determination of multi-class hydrophobic organic contaminants in marine sediments and biota using GC-EI-MS/MS and LC-ESI-MS/MS. Talanta 143:7–18. https://doi.org/10.1016/j.talanta.2015.04.084

    Article  CAS  PubMed  Google Scholar 

  33. Barón E, Eljarrat E, Barceló D (2014) Gas cromatography/tandem mass spectrometry method for the simultaneous analysis of 19 brominates compounds in environmental and biological samples. Anal Bioanal Chem 406:7667–7676. https://doi.org/10.1007/s00216-014-8196-7

    Article  CAS  PubMed  Google Scholar 

  34. EC (2009) REGULATION (EC) No 1107/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off J Eur Union L 309:1–50. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107

    Google Scholar 

  35. Gusmaroli L, Buttiglieri G, Petrovic M (2019) The EU watch list compounds in the Ebro delta region: assessment of sources, river transport, and seasonal variations. Environ Pollut 253:606–615. https://doi.org/10.1016/j.envpol.2019.07.052

    Article  CAS  PubMed  Google Scholar 

  36. Masiá A, Campo J, Navarro-Ortega A, Barceló D, Picó Y (2015) Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci Total Environ 503:58–68. https://doi.org/10.1016/j.scitotenv.2014.06.095

    Article  CAS  PubMed  Google Scholar 

  37. Köck-Schulmeyer M, Ginebreda A, González S, Cortina JL, de Alda ML, Barceló D (2012) Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Chemosphere 86(1):8–16. https://doi.org/10.1016/j.chemosphere.2011.08.034

    Article  CAS  PubMed  Google Scholar 

  38. Navarro A, Tauler R, Lacorte S, Barceló D (2010) Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J Hydrol 383(1–2):18–29. https://doi.org/10.1016/j.jhydrol.2009.06.039

    Article  CAS  Google Scholar 

  39. Navarro-Ortega A, Tauler R, Lacorte S, Barceló D (2010) Occurrence and transport of PAHs, pesticides and alkylphenols in sediment samples along the Ebro River Basin. J Hydrol 383(1–2):5–17. https://doi.org/10.1016/j.jhydrol.2009.12.031

    Article  CAS  Google Scholar 

  40. Pietrzak D, Kania J, Malina G, Kmiecik E, Wątor K (2019) Pesticides from the EU first and second Watch Lists in the water environment. Clean-Soil Air Water 47(7):1800376. https://doi.org/10.1002/clen.201800376

    Article  CAS  Google Scholar 

  41. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(6):497–526. https://doi.org/10.1002/elsc.200520098

    Article  CAS  Google Scholar 

  42. Pinto MI, Burrows HD, Sontag G, Vale C, Noronha JP (2016) Priority pesticides in sediments of European coastal lagoons: a review. Mar Pollut Bull 112(1–2):6–16. https://doi.org/10.1016/j.marpolbul.2016.06.101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Economy and Competitiveness (Project BECAS CTM2016-75587-C2-2-R); the Ministry of Agriculture and Fisheries, Food and Environment (Project APAN Ref. 2392/2017); and by the Generalitat de Catalunya (Consolidated Research Group Water and Soil Quality Unit 2017 SGR 1404). IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S).

Funding

This study was funded by the Spanish Ministry of Economy and Competitiveness (Project BECAS CTM2016-75587-C2-2-R); the Ministry of Agriculture and Fisheries, Food and Environment (Project APAN Ref. 2392/2017); and by the Generalitat de Catalunya (Consolidated Research Group Water and Soil Quality Unit 2017 SGR 1404). IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethel Eljarrat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peris, A., Eljarrat, E. Multi-residue Methodologies for the Analysis of Non-polar Pesticides in Water and Sediment Matrices by GC–MS/MS. Chromatographia 84, 425–439 (2021). https://doi.org/10.1007/s10337-021-04026-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04026-x

Keywords

Navigation