Skip to main content
Log in

Bioanalytical Applications of Microextraction Techniques: A Review of Reviews

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2020

This article has been updated

Abstract

Sample preparation is a critical step in the separation of target analytes from complex matrices, which can influence the reliability and accuracy of the resulting analysis. Recent trends in sample preparation techniques are directed toward the automation and online coupling of sample preparation units, miniaturization, high efficiency, low costs, and reducing or eliminating solvent consumption. Microextraction techniques (METs) have all these advantages over conventional extraction methods. Thus, the application of METs in the analysis of different analytes from biological samples has increased significantly in recent years. Over time, many review articles have been written, which focus on the advantages, applications, and advances of these techniques for the analysis of various compounds in biological matrices. This paper presents a review of publications pertaining to the application of different types of METs in the analysis of biological samples along with their different aspects and a discussion of their future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 13 April 2020

    In the original publication, the phrase “Liquid phase” in Table 1 column 1 was included in the wrong line. The phrase needs to be included in row 13 in front of LPME.

References

  1. Larive CK (2005) Instruction in bioanalytical chemistry. Anal Bioanal Chem 382:855–856

    CAS  PubMed  Google Scholar 

  2. Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M (2016) New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 905:8–23

    PubMed  Google Scholar 

  3. Jalili V, Barkhordari A, Norouzian Baghani A (2019) The role of microextraction techniques in occupational exposure assessment. A review. Microchem J 150:104086

    CAS  Google Scholar 

  4. Pawliszyn J (2002) Sampling and sample preparation in field and laboratory: fundamentals and new directions in sample preparation, vol 37, 1st edn. Elsevier, Canada

    Google Scholar 

  5. Huang K-J, Jing Q-S, Wei C-Y, Wu Y-Y (2011) Spectrofluorimetric determination of glutathione in human plasma by solid-phase extraction using graphene as adsorbent. Spectrochim Acta A Mol Biomol Spectrosc 79:1860–1865

    CAS  PubMed  Google Scholar 

  6. Szultka M, Pomastowski P, Railean-Plugaru V, Buszewski B (2014) Microextraction sample preparation techniques in biomedical analysis. J Sep Sci 37:3094–3105

    CAS  PubMed  Google Scholar 

  7. Kabir A, Locatelli M, Ulusoy IH (2017) Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 4(2017):1–15

    Google Scholar 

  8. Ashri NY, Abdel-Rehim M (2011) Sample treatment based on extraction techniques in biological matrices. Bioanalysis 3:2003–2018

    CAS  PubMed  Google Scholar 

  9. Bello-López MÁ, Ramos-Payán M, Ocaña-González JA, Fernández-Torres R, Callejón-Mochón M (2012) Analytical applications of hollow fiber liquid phase microextraction (HF-LPME): a review. Anal Lett 45:804–830

    Google Scholar 

  10. Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal Chim Acta 624:253–268

    CAS  PubMed  Google Scholar 

  11. Jalili V, Barkhordari A, Ghiasvand A (2019) New extraction media in microextraction techniques. A review of reviews. Microchem J 153:104386

    Google Scholar 

  12. Yang C, Wang J, Li D (2013) Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 799:8–22

    CAS  PubMed  Google Scholar 

  13. Filipiak W, Bojko B (2019) SPME in clinical, pharmaceutical, and biotechnological research—how far are we from daily practice? Trends Anal Chem 115:203–213

    CAS  Google Scholar 

  14. Augusto F, Luiz Pires Valente A (2002) Applications of solid-phase microextraction to chemical analysis of live biological samples. Trends Anal Chem 21:428–438

    CAS  Google Scholar 

  15. Jalili V, Barkhordari A, Heidari M (2019) The role of aerogel-based sorbents in microextraction techniques. Microchem J 147:948–954

    CAS  Google Scholar 

  16. Souza-Silva ÉA, Jiang R, Rodríguez-Lafuente A, Gionfriddo E, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Anal Chem 71:224–235

    CAS  Google Scholar 

  17. Goryński K, Goryńska P, Górska A, Harężlak T, Jaroch A, Jaroch K, Lendor S, Skobowiat C, Bojko B (2016) SPME as a promising tool in translational medicine and drug discovery: from bench to bedside. J Pharm Biomed Anal 130:55–67

    PubMed  Google Scholar 

  18. Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J (2010) Protocol for solid-phase microextraction method development. Nat Protoc 5:122–139

    CAS  PubMed  Google Scholar 

  19. Jalili V, Barkhordari A, Ghiasvand A (2020) A comprehensive look at solid-phase microextraction technique: a review of reviews. Microchem J 152:104319

    CAS  Google Scholar 

  20. Moliner-Martinez Y, Ballester-Caudet A, Verdú-Andrés J, Herráez-Hernández R, Molins-Legua C, Campíns-Falcó P (2020) In-tube solid-phase microextraction. In: Poole CF (ed) Solid-phase extraction. Elsevier, Amsterdam, pp 387–427

    Google Scholar 

  21. Moliner-Martinez Y, Herráez-Hernández R, Verdú-Andrés J, Molins-Legua C, Campíns-Falcó P (2015) Recent advances of in-tube solid-phase microextraction. Trends Anal Chem 71:205–213

    CAS  Google Scholar 

  22. Mills GA, Walker V (2000) Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials. J Chromatogr A 902:267–287

    CAS  PubMed  Google Scholar 

  23. Koziel JA, Odziemkowski M, Pawliszyn J (2001) Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices. Anal Chem 73:47–54

    CAS  PubMed  Google Scholar 

  24. Ueta I, Saito Y (2020) Needle extraction device. In: Poole CF (ed) Solid-phase extraction. Elsevier, Amsterdam, pp 429–442

    Google Scholar 

  25. Jalili V, Zendehdel R, Bahramian A, Barkhordari A (2019) Application of needle trap device based on the carbon aerogel for trace analysis of n-Hexane in air samples. Chromatographia 82:1515–1521

    CAS  Google Scholar 

  26. Azari MR, Barkhordari A, Zendehdel R, Heidari M (2017) A novel needle trap device with nanoporous silica aerogel packed for sampling and analysis of volatile aldehyde compounds in air. Microchem J 134:270–276

    CAS  Google Scholar 

  27. Kędziora K, Wasiak W (2017) Extraction media used in needle trap devices—progress in development and application. J Chromatogr A 1505:1–17

    PubMed  Google Scholar 

  28. Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices: a critical review. Anal Chim Acta 677:3–18

    CAS  PubMed  Google Scholar 

  29. Kędziora-Koch K, Wasiak W (2018) Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: trends in application. J Chromatogr A 1565:1–18

    PubMed  Google Scholar 

  30. Wilcockson JB, Gobas FAPC (2001) Thin-film solid-phase extraction to measure fugacities of organic chemicals with low volatility in biological samples. Environ Sci Technol 35:1425–1431

    CAS  PubMed  Google Scholar 

  31. Vuckovic D, Cudjoe E, Musteata FM, Pawliszyn J (2010) Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand–receptor binding studies. Nat Protoc 5:140–161

    CAS  PubMed  Google Scholar 

  32. Mirnaghi FS, Hein D, Pawliszyn J (2013) Thin-film microextraction coupled with mass spectrometry and liquid chromatography-mass spectrometry. Chromatographia 76:1215–1223

    CAS  Google Scholar 

  33. Jiang R, Pawliszyn J (2012) Thin-film microextraction offers another geometry for solid-phase microextraction. Trends Anal Chem 39:245–253

    CAS  Google Scholar 

  34. Olcer YA, Tascon M, Eroglu AE, Boyacı E (2019) Thin film microextraction: towards faster and more sensitive microextraction. Trends Anal Chem 113:93–101

    CAS  Google Scholar 

  35. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360

    PubMed  Google Scholar 

  36. Gómez-Ríos GA, Tascon M, Reyes-Garcés N, Boyacı E, Poole J, Pawliszyn J (2017) Quantitative analysis of biofluid spots by coated blade spray mass spectrometry, a new approach to rapid screening. Sci Rep 7:16104

    PubMed  PubMed Central  Google Scholar 

  37. Karageorgou E, Manousi N, Samanidou V, Kabir A, Furton KG (2016) Fabric phase sorptive extraction for the fast isolation of sulfonamides residues from raw milk followed by high performance liquid chromatography with ultraviolet detection. Food Chem 196:428–436

    CAS  PubMed  Google Scholar 

  38. Racamonde I, Rodil R, Quintana JB, Sieira BJ, Kabir A, Furton KG, Cela R (2015) Fabric phase sorptive extraction: a new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples. Anal Chim Acta 865:22–30

    CAS  PubMed  Google Scholar 

  39. Aznar M, Alfaro P, Nerin C, Kabir A, Furton KG (2016) Fabric phase sorptive extraction: an innovative sample preparation approach applied to the analysis of specific migration from food packaging. Anal Chim Acta 936:97–107

    CAS  PubMed  Google Scholar 

  40. Samanidou V, Galanopoulos L-D, Kabir A, Furton KG (2015) Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection. Anal Chim Acta 855:41–50

    CAS  PubMed  Google Scholar 

  41. Kumar R, Gaurav H, Malik AK, Kabir A, Furton KG (2014) Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. J Chromatogr A 1359:16–25

    CAS  PubMed  Google Scholar 

  42. Kabir A, Mesa R, Jurmain J, Furton GK (2017) Fabric phase sorptive extraction explained. Separations 4:1–15

    Google Scholar 

  43. Zilfidou E, Kabir A, Furton GK, Samanidou V (2018) Fabric phase sorptive extraction: current state of the art and future perspectives. Separations 5:1–10

    Google Scholar 

  44. Stanisz E, Werner J, Zgoła-Grześkowiak A (2014) Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals. Trends Anal Chem 61:54–66

    CAS  Google Scholar 

  45. Rutkowska M, Płotka-Wasylka J, Sajid M, Andruch V (2019) Liquid-phase microextraction: a review of reviews. Microchem J 149:103989

    CAS  Google Scholar 

  46. Campillo N, Gavazov K, Viñas P, Hagarova I, Andruch V (2019) Liquid-phase microextraction: update May 2016 to December 2018. Appl Spectrosc Rev 54:1–20

    Google Scholar 

  47. Jeannot MA, Cantwell FF (1996) Solvent microextraction into a single drop. Anal Chem 68:2236–2240

    CAS  PubMed  Google Scholar 

  48. Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. Trends Anal Chem 21:54–64

    Google Scholar 

  49. Jeannot MA, Przyjazny A, Kokosa JM (2010) Single drop microextraction—development, applications and future trends. J Chromatogr A 1217:2326–2336

    CAS  PubMed  Google Scholar 

  50. Jain A, Verma KK (2020) Chapter 15—single-drop microextraction. In: Poole CF (ed) Liquid-phase extraction. Elsevier, Amsterdam, pp 439–472

    Google Scholar 

  51. Marcinkowski Ł, Pena-Pereira F, Kloskowski A, Namieśnik J (2015) Opportunities and shortcomings of ionic liquids in single-drop microextraction. Trends Anal Chem 72:153–168

    CAS  Google Scholar 

  52. Choi K, Kim J, Chung DS (2011) Single-drop microextraction in bioanalysis. Bioanalysis 3:799–815

    CAS  PubMed  Google Scholar 

  53. Rasmussen KE, Pedersen-Bjergaard S (2004) Developments in hollow fibre-based, liquid-phase microextraction. Trends Anal Chem 23:1–10

    CAS  Google Scholar 

  54. Esrafili A, Baharfar M, Tajik M, Yamini Y, Ghambarian M (2018) Two-phase hollow fiber liquid-phase microextraction. Trends Anal Chem 108:314–322

    CAS  Google Scholar 

  55. Jiang X, Lee HK (2004) Solvent bar microextraction. Anal Chem 76:5591–5596

    CAS  PubMed  Google Scholar 

  56. Pinto JJ, Martín M, Herce-Sesa B, López-López JA, Moreno C (2015) Solvent bar micro-extraction: improving hollow fiber liquid phase micro-extraction applicability in the determination of Ni in seawater samples. Talanta 142:84–89

    CAS  PubMed  Google Scholar 

  57. Chia K-J, Huang S-D (2006) Analysis of organochlorine pesticides in wine by solvent bar microextraction coupled with gas chromatography with tandem mass spectrometry detection. Rapid Commun Mass Spectrom 20:118–124

    CAS  PubMed  Google Scholar 

  58. López-López JA, Mendiguchía C, Pinto JJ, Moreno C (2019) Application of solvent-bar micro-extraction for the determination of organic and inorganic compounds. Trends Anal Chem 110:57–65

    Google Scholar 

  59. Xu L, Lee HK (2009) Solvent-bar microextraction—using a silica monolith as the extractant phase holder. J Chromatogr A 1216:5483–5488

    CAS  PubMed  Google Scholar 

  60. Sarafraz-Yazdi A, Amiri A (2010) Liquid-phase microextraction. Trends Anal Chem 29:1–14

    CAS  Google Scholar 

  61. Sajid M, Alhooshani K (2018) Dispersive liquid–liquid microextraction based binary extraction techniques prior to chromatographic analysis: a review. Trends Anal Chem 108:167–182

    CAS  Google Scholar 

  62. Zgoła-Grześkowiak A, Grześkowiak T (2011) Dispersive liquid–liquid microextraction. Trends Anal Chem 30:1382–1399

    Google Scholar 

  63. Han D, Tang B, Ri Lee Y, Ho Row K (2012) Application of ionic liquid in liquid phase microextraction technology. J Sep Sci 35:2949–2961

    CAS  PubMed  Google Scholar 

  64. Yan H, Wang H (2013) Recent development and applications of dispersive liquid–liquid microextraction. J Chromatogr A 1295:1–15

    CAS  PubMed  Google Scholar 

  65. Carasek E, Merib J (2015) Membrane-based microextraction techniques in analytical chemistry: a review. Anal Chim Acta 880:8–25

    CAS  PubMed  Google Scholar 

  66. Bendicho C, Lavilla I, Pena F, Costas M (2011) Green sample preparation methods. Chall Green Anal Chem 13:107–143

    Google Scholar 

  67. Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G (2019) Solid-phase microextraction: an appealing alternative for the determination of endogenous substances—a review. Anal Chim Acta 1077:67–86

    CAS  PubMed  Google Scholar 

  68. Zhang X, Oakes KD, Wang S, Servos MR, Cui S, Pawliszyn J, Metcalfe CD (2012) In vivo sampling of environmental organic contaminants in fish by solid-phase microextraction. Trends Anal Chem 32:31–39

    Google Scholar 

  69. Pedersen-Bjergaard S, Rasmussen KE (2005) Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques. J Chromatogr B 817:3–12

    CAS  Google Scholar 

  70. Lucena R, Cruz-Vera M, Cárdenas S, Valcárcel M (2009) Liquid-phase microextraction in bioanalytical sample preparation. Bioanalysis 1:135–149

    CAS  PubMed  Google Scholar 

  71. Namera A, Saito T (2013) Recent advances in unique sample preparation techniques for bioanalysis. Bioanalysis 5:915–932

    CAS  PubMed  Google Scholar 

  72. Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Anal Chem 71:249–264

    CAS  Google Scholar 

  73. Hamidi S, Alipour-Ghorbani N, Hamidi A (2018) Solid phase microextraction techniques in determination of biomarkers. Crit Rev Anal Chem 48:239–251

    CAS  PubMed  Google Scholar 

  74. Watt A, Mortishire-Smith R, Gerhard U, Thomas S (2003) Metabolite identification in drug discovery. Curr Opin Drug Discov Dev 6:57–65

    CAS  Google Scholar 

  75. Staack RF, Hopfgartner G (2007) New analytical strategies in studying drug metabolism. Anal Bioanal Chem 388:1365–1380

    CAS  PubMed  Google Scholar 

  76. Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196

    CAS  PubMed  Google Scholar 

  77. Seidi S, Rezazadeh M, Yamini Y (2018) Pharmaceutical applications of liquid-phase microextraction. Trends Anal Chem 108:296–305

    CAS  Google Scholar 

  78. Mansour FR, Khairy MA (2017) Pharmaceutical and biomedical applications of dispersive liquid–liquid microextraction. J Chromatogr B 1061–1062:382–391

    Google Scholar 

  79. Ansari S, Karimi M (2017) Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology. Talanta 164:612–625

    CAS  PubMed  Google Scholar 

  80. Tabani H, Nojavan S, Alexovič M, Sabo J (2018) Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 160:244–267

    CAS  PubMed  Google Scholar 

  81. Moein MM, Said R, Bassyouni F, Abdel-Rehim M (2014) Solid phase microextraction and related techniques for drugs in biological samples. J Anal Methods Chem 14:1–23

    Google Scholar 

  82. Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396:339–364

    CAS  PubMed  Google Scholar 

  83. Kataoka H, Saito K (2011) Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 54:926–950

    CAS  PubMed  Google Scholar 

  84. Saraji M, Khaje N (2012) Recent advances in liquid microextraction techniques coupled with MS for determination of small-molecule drugs in biological samples. Bioanalysis 4:725–739

    CAS  PubMed  Google Scholar 

  85. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    CAS  PubMed  Google Scholar 

  86. Chen N, Li J, Li D, Yang Y, He D (2014) Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro. PLoS ONE 9:e113453

    PubMed  PubMed Central  Google Scholar 

  87. Musteata FM, Vuckovic D (2012) 12—In vivo sampling with solid-phase microextraction. In: Pawliszyn J (ed) Handbook of solid phase microextraction. Elsevier, Oxford, pp 399–453

    Google Scholar 

  88. Zhu F, Xu J, Ke Y, Huang S, Zeng F, Luan T, Ouyang G (2013) Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: a review. Anal Chim Acta 794:1–14

    CAS  PubMed  Google Scholar 

  89. Vuckovic D, Zhang X, Cudjoe E, Pawliszyn J (2010) Solid-phase microextraction in bioanalysis: new devices and directions. J Chromatogr A 1217:4041–4060

    CAS  PubMed  Google Scholar 

  90. Zhang Q-H, Zhou L-D, Chen H, Wang C-Z, Xia Z-N, Yuan C-S (2016) Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Anal Chem 80:57–65

    CAS  Google Scholar 

  91. Roszkowska A, Miękus N, Bączek T (2019) Application of solid-phase microextraction in current biomedical research. J Sep Sci 42:285–302

    CAS  PubMed  Google Scholar 

  92. Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    CAS  Google Scholar 

  93. Schmidt K, Podmore I (2015) Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark 20:1–16

    Google Scholar 

  94. Manno M, Sito F, Licciardi L (2014) Ethics in biomonitoring for occupational health. Toxicol Lett 231:111–121

    CAS  PubMed  Google Scholar 

  95. Semple S (2004) Dermal exposure to chemicals in the workplace: just how important is skin absorption? Occup Environ Med 61:376

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jakubowski M (2012) Biological monitoring versus air monitoring strategies in assessing environmental–occupational exposure. J Environ Mon 14:348–352

    CAS  Google Scholar 

  97. Heinrich-Ramm R, Jakubowski M, Heinzow B, Christensen JM, Olsen E, Hertel O (2000) Biological monitoring for exposure to volatile organic compounds (VOCs) (IUPAC Recommendations 2000). Pure Appl Chem 72:385–436

    CAS  Google Scholar 

  98. Pavlović DM, Babić S, Horvat AJM, Kaštelan-Macan M (2007) Sample preparation in analysis of pharmaceuticals. Trends Anal Chem 26:1062–1075

    Google Scholar 

  99. Amorim LCA, de Cardeal LZ (2007) Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents. J Chromatogr B 853:1–9

    CAS  Google Scholar 

  100. Schmidt K, Podmore I (2015) Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark 15:1–16

    Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Barkhordari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original ​version ​of ​this ​article ​was ​revised:the phrase “Liquid phase” in Table 1, column 1 was included in row 13 in front of LPME. In reference No. 25, the spelling for “n-Hexane in air samples” was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, V., Barkhordari, A. & Ghiasvand, A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 83, 567–577 (2020). https://doi.org/10.1007/s10337-020-03884-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03884-1

Keywords

Navigation