Skip to main content

Advertisement

Log in

Investigation of Selectivity of Amino Functionalised Phases for Pharmaceutical Applications

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Amino column is a special stationary phase with diverse applications on reversed and normal phase, as well as on hydrophilic interaction chromatography. The objective of the present research was to explore the retention mechanism of the amino column, which triggered the detailed study of the chromatographic behavior of 44 drugs (analytes) divided into eight groups. The analytes were studied at five different mobile phases and the retention times were interpreted on the basis of their physicochemical properties and structural features (expressed by 30 variables). The data were fed as input in the partial least squares software and were processed for the development of three different validated models which provided an overview of the behavior of the analytes on amino column. The results showed that the major factors responsible for the chromatographic behavior of the studied drugs on amino column were: the presence of carboxylic group(s), the ionization degree, the pKa values of their basic moieties, and the molar volume. On the contrary, it was observed that the presence of hydroxyl group(s) is indirectly related to the retention phenomenon. In few words, the amino column is attributed a mixed mode depending on the conditions, especially on the composition of the mobile phase. The information derived from such a research could provide a solid base to optimize the use of an amino column in drug analysis not only for research purposes, but also for its use in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cazes J (2009) Encyclopedia of chromatography, 3rd edn. CRC Press, USA

    Google Scholar 

  2. Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25

    CAS  PubMed  Google Scholar 

  3. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177

    CAS  PubMed  Google Scholar 

  4. McCalley DV (2017) Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A 1523:49–71

    CAS  PubMed  Google Scholar 

  5. Hemström P, Irgum K (2006) Ηydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    PubMed  Google Scholar 

  6. Guo Y, Gaiki S (2011) Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1218:5920–5938

    CAS  PubMed  Google Scholar 

  7. Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development, 2nd edn. Wiley, USA

    Google Scholar 

  8. Martínez Montero C, Rodríguez Dodero MC, Guillén Sánchez DA, Barroso CG (2004) Analysis of low molecular weight carbohydrates in food and beverages: a review. Chromatographia 1–2:15–30

    Google Scholar 

  9. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402(1):231–247

    CAS  PubMed  Google Scholar 

  10. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley, USA

    Google Scholar 

  11. Nikolov ZL, Meagher MM, Reilly PJ (1985) High-performance liquid chromatography of trisaccharides on amine-bonded silica columns. J Chromatogr A 321:393–399

    CAS  Google Scholar 

  12. Endo T, Ueda H, Kobayashi S, Nagai T (1995) Isolation, purification and characterization of cyclomaltodecaose (ε-cyclodextrin). Carbohyd Res 269:369–373

    CAS  Google Scholar 

  13. Chang KB, Lee J, Fu WR (2000) HPLC analysis of N-acetylchitooligosaccharides during the acid hydrolysis of chitin. J Food Drug Anal 8(1):75–83

    CAS  Google Scholar 

  14. Ko JH, Cheong WJ (2001) Bull Korean Chem Soc 22(1):123–126

    CAS  Google Scholar 

  15. Tanimoto T, Ikuta A, Sugiyama M, Koizumi M (2002) HPLC analysis of manno-ologosaccharides derived from Saccharomyces cerevisiae mannan using an amino column or a graphitized carbon column. Chem Pharm Bull 50(2):280–283

    CAS  PubMed  Google Scholar 

  16. Shao Y, Alluri R, Mummert M, Koetter U, Lech S (2004) A stability-indicating HPLC method for the determination of glucosamine in pharmaceutical formulations. J Pharm Biomed Anal 35(3):625–631

    CAS  PubMed  Google Scholar 

  17. Rahman NA, Hasan M, Hussain M, Jahim J (2008) Determination of glucose and fructose from glucose isomerization process by high performance liquid chromatography with UV detection. Mod Appl Sci 2(4):151–154

    CAS  Google Scholar 

  18. Zhang TB, Yue RQ, Xu J, Ho JM, Ma DL, Leung CH, Chau SL, Zhao ZZ, Chen HB, Han QB (2015) Comprehensive quantitative analysis of Shuang-Huang-Lian oral liquid using UHPLC–Q-TOF–MS and HPLC–ELSD. J Pharm and Biomed Anal 102:1–8

    CAS  Google Scholar 

  19. Fung HY, Lang Y, Ho HM, Wong TL, Ma DL, Leung CH, Han QB (2017) Comprehensive quantitative analysis of 32 chemical ingredients of a Chinese patented drug sanhuang tablet. Molecules 22(1):111–118

    PubMed Central  Google Scholar 

  20. Chaisuwan P, Kongprasertsak T, Sangcakul A, Smith NW, Nachapricha D, Wilairat P, Uraisin K (2011) Direct injection of human serum and pharmaceutical formulations for glucosamine determination by CE-C(4)D method. J Chromatogr B 879(23):2185–2188

    CAS  Google Scholar 

  21. Suo H, Xu K, Zhang H, Zheng X (2015) Determination of glucosamine and its derivatives released from photocrosslinked gelatin hydrogels using HPLC. Biomed Chromatogr 30(2):169–174

    PubMed  Google Scholar 

  22. Bushway R (1982) High-performance chromatographic separation of potato glycoalkaloids using a radially compressed amino column. J Chromatogr A 247(1):180–183

    CAS  Google Scholar 

  23. Liu C, Li LS, Xu LL, Zhou ZM (2007) Separationa and identification of stevioside and rebaudioside A in stevia by HPLC. Chin J Anal Lab 26:23–26

    Google Scholar 

  24. Grizzle PL, Sablotny DM (1986) Automated liquid chromatographic compound class group-type separation of crude oils and bitumens using chemically bonded silica–NH2. Anal Chem 58(12):2389–2396

    CAS  Google Scholar 

  25. Östman CE, Colmsjö A (1987) Backflush HPLC for the isolation of polycyclic aromatic compounds—a comparative study. Chromatographia 23(12):903–908

    Google Scholar 

  26. Caceres A, Ysambertt F, Lopez J, Marquez N (1996) Analysis of photostabilizer in high density polyethylene by reverse- and normal-phase HPLC. Sep Sci Technol 31(16):2287–2298

    CAS  Google Scholar 

  27. Doner LW, Hicks KB (1981) High-performance liquid chromatographic separation of ascorbic acid, erythobic acid, dehydroerythobic acid and diketogulonic acid. Anal Biochem 115(1):225–230

    CAS  PubMed  Google Scholar 

  28. Lopez PG, Pereira GF, Santoro MI, Kedor-Hackman ER, Vilchez Quero JL, Navalón Montón AL, Crovetto Montoya G, Aguilera Cabrera M (2011) Determination of vecuronium bromide in pharmaceuticals: development, validation and comparative study of HPLC and CZE analytical methods. Chromatographia 73(7–8):799–805

    Google Scholar 

  29. Kim JH, Shinn HK, Seo CS (2014) Development of a quantitative analysis method for the 12 marker compounds in Palmijihwang-hwan, a herbal formula, using a reversed-phase C18 column and an amino column by HPLC. Anal Methods 6(11):3763–3771

    CAS  Google Scholar 

  30. Perlman S, Kirschbaum J (1981) High-performance liquid chromatographic analyses of the antihypertensive drug cartopril. J Chromatogr A 206(2):311–317

    CAS  Google Scholar 

  31. Doner LW, Hsu AF (1982) High-performance liquid chromatographic separation of alkaloids from Papaver somniferum on a Zorbax NH2 analytical column. J Chromatogr A 253:120–123

    CAS  Google Scholar 

  32. Xu CJ, Lin JT (1985) Comparison of silica, CIS-, and NH2-HPLC columns for the separation of neutral steroid saponins from Dioscorea plants. J Liq Chromatogr 8(2):361–368

    CAS  Google Scholar 

  33. Hosotsubo H (1989) Rapid and specific method for the determination of vancomycin in plasma by high-performance liquid chromatographicy on an aminopropyl column. J Chromatogr B 487(2):421–427

    CAS  Google Scholar 

  34. Lee C, Porziemsky J, Aubert M, Krstulovic A (1991) Liquid and high-pressure carbon dioxide chromatography of β-blockers: resolution of the enantiomers of nadolol. J Chromatogr A 539(1):55–69

    CAS  Google Scholar 

  35. Ascalone V, Dal Bò L (1983) Determination of ceftriaxone, a novel cephalosporin, in plasma, urine and saliva by high-performance liquid chromatography on an NH2 bonded-phase column. J Chromatogr B 273(2):357–366

    CAS  Google Scholar 

  36. Gagliardi L, de Orsi D, Cavazzutti G, Tonelli D, Zappoli S (1994) HPLC determination of oxiracetam, its impurities, and piracetam in pharmaceutical formulations. Anal Lett 27(5):879–885

    CAS  Google Scholar 

  37. Olsen BA (2001) Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities. J Chromatogr A 913(1–2):113–122

    CAS  PubMed  Google Scholar 

  38. Sha DX, Zhang ML (2005) Determination of notoginsenoside R1, gingenoside Rg1 and Rb1in radix Notoginseng and its preparation by HPLC-ELSD. J Chin Mater Med 30(2):112–115

    CAS  Google Scholar 

  39. Popović G, Vučićević M, Vladimirov S, Agbaba D (2007) Comparison of HPTLC and HPLC for deteremination of econazole nitrate in topical dosage forms. J Planar Chromatogr Mod TLC 17(2):109–112

    Google Scholar 

  40. López PG, Pereira Gomes F, Santoro MI, Kedor-Hackmann ER (2008) Validation of an HPLC analytical method for determination of pancuronium bromide in pharmaceutical injections. Anal Lett 41(10):1895–1908

    Google Scholar 

  41. Tian J, Wang W, Gao H, Wang Z (2007) Determination of matrine, sophoridine and oxymatrine in Compound Kushen Injection by HPLC. J Chin Mater Med 32(3):222–224

    CAS  Google Scholar 

  42. Kouskoura MG, Hadjipavlou-Litina D, Markopoulou CK (2014) Elucidation of the retention mechanism on cyano column using PLS and QSAR models. J Sep Sci 37(15):1919–1929

    CAS  PubMed  Google Scholar 

  43. Kouskoura MG, Mitani CV, Markopoulou CK (2015) Study and development of reverse phase HPLC systems for the simultaneous determination of 2-imidazolines combined with preservatives in pharmaceutical preparations. J AOAC Int 98(5):1462–1470

    CAS  PubMed  Google Scholar 

  44. Kouskoura MG, Kachrimanis KG, Markopoulou CK (2014) Modelling the drugs’ passive transfer in the body based on their HPLC behavior. J Pharm Biomed Anal 4(100):94–102

    Google Scholar 

  45. SimCa-P 9, User Guide and Tutorial, 2001

  46. https://www.drugbank.ca/

  47. https://pubchem.ncbi.nlm.nih.gov/

  48. http://www.chemspider.com/

  49. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:193–1202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine K. Markopoulou.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaki, C., Georganta, C., Kouskoura, M.G. et al. Investigation of Selectivity of Amino Functionalised Phases for Pharmaceutical Applications. Chromatographia 83, 159–171 (2020). https://doi.org/10.1007/s10337-019-03833-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03833-7

Keywords

Navigation