Skip to main content
Log in

Simultaneous Determination and Enrichment of β-Sitosterol From Edible Oil Samples Using Poly(NMA-ST-co-TAIC-co-EDMA) Monolith as Sorbent with On-line SPE-HPLC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A poly(NMA-ST-co-TAIC-EDMA) monolithic column was prepared by redox initiation method using N-methylolacrylamide (NMA) and styrene (ST) as co-monomers. The composite monolith was characterized by scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherm and was used as a solid phase extraction (SPE) absorbent for enrichment of β-sitosterol by high performance liquid chromatography (HPLC). Under the optimum conditions for extraction and determination, the calibration equation was y = 1.02247x + 0.1766; the linear range was 0.015–0.75 mg mL−1 and the linear regression coefficient was 0.998. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.006 mg mL−1 and 0.02 mg mL−1, respectively. The spiked recoveries of β-sitosterol in edible oil samples were 83.60–103.88%; precisions for intra-day and inter-day assays presented as relative standard deviations were less than 6.0% and 6.2%, respectively. The enrichment factor of β-sitosterol was 60 and the results showed that the monolithic column had high selectivity and good permeability as an on-line SPE absorbent for the enrichment and determination of β-sitosterol from edible oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asım O, Cesarettin A, Birgül VK, Serap Y, Cihan O, Ayse K, Ebru P, Jerzy Z (2017) Cardio-protective effects of phytosterol-enriched functional black tea in mild hypercholesterolemia subjects. J Funct Foods 31:311–319

    Article  CAS  Google Scholar 

  2. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegard L, Jessup W, Jones PJ, Lutjohann D, Maerz W, Masana L (2014) Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 232:346–360

    Article  CAS  PubMed  Google Scholar 

  3. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  CAS  PubMed  Google Scholar 

  4. Bacchetti T, Masciangelo S, Bicchiega V, Bertoli E, Ferretti G (2011) Phytosterols, phytostanols and their esters: from natural to functional foods. Mediter J Nutr Metab 4:165–172

    Article  Google Scholar 

  5. Liu SY, ANaErGuLi M (2012) Determination of β-sitosterol with chemical course and material applications in Jatropha seed oil by high performance liquid chromatography. Adv Mater Res 577:69–72

    Article  CAS  Google Scholar 

  6. Micallef MA, Garg ML (2009) Beyond blood lipids: phytosterols, statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia. J Nutr Biochem 20:927–939

    Article  CAS  PubMed  Google Scholar 

  7. Franca M, Andrea P (2010) Phytosterols and cardiovascular health. Pharmacol Res 61:193–199

    Article  CAS  Google Scholar 

  8. Naiyer S, Wajahatullah K, Shadab MD, Asgar A, Sundeep SS, Sadhana S, Faisal A, Al-Allaf ZA, Ibrahim AAI (2017) Phytosterols as a natural anticancer agent: current status and future perspective. Biomed Pharmacother 88:786–794

    Article  CAS  Google Scholar 

  9. Vieno P, David GL, Tatu AM, Jari T, Anna-Maija L (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    Article  Google Scholar 

  10. Klingberg S, Andersson H, Mulligan A, Bhaniani A, Welch A, Bingham S, Khaw KT, Andersson S, Ellegård L (2008) Food sources of plant sterols in the EPIC Norfolk population. Eur J Clin Nutr 62:695–703

    Article  CAS  PubMed  Google Scholar 

  11. Andrey S, Andrey B, Marcello L, Simone C, Vasil A (2017) Application of deep eutectic solvents in analytical chemistry: a review. Microchem J 135:33–38

  12. Salgueiro-González N, Castiglioni S, Zuccato E, Turnes-Carou I, López-Mahía P, Muniategui-Lorenzo S (2018) Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: a critical review. Anal Chim Acta 1024:39–51

    Article  CAS  PubMed  Google Scholar 

  13. Wajs-Bonikowska A, Stobiecka A, Bonikowski R, Krajewska A, Sikora M, Kula J (2017) A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubusfruticosus) growing in Poland. Soc Chem Ind 97:3576–3583

    CAS  Google Scholar 

  14. Hrabovski N, Sinadinović-Fišer S, Nikolovski B, Sovilj M, Borota O (2012) Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur J Lipid Sci Technol 114:1204–1211

    Article  CAS  Google Scholar 

  15. Azadmard-Damirchi S, Dutta PC (2006) Novel solid-phase extraction extraction method to separate 4-desmethyl-4-monomethyl and 4,4ʹ-dimethylsterols in vegetable oils. J Chromatogr A 1108:183–187

    Article  CAS  PubMed  Google Scholar 

  16. Płotka-Wasylka J, Szczepańska N, Guardia MDL, Namieśnik J (2016) Modern trends in solid phase extraction: new sorbent media. Trends Anal Chem 77:23–43

    Article  CAS  Google Scholar 

  17. Płotka-Wasylka J, Szczepańska N, Guardia M, Namieśnik J (2015) Miniaturized solid-phase extraction techniques. Trends Anal Chem 73:19–38

    Article  CAS  Google Scholar 

  18. Yolanda P, Mónica F, MariaJose R, Guillermina F (2007) Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment. J Biochem Biophys Methods 70:117–131

    Article  CAS  Google Scholar 

  19. Zhu T, Row KH (2010) Extraction and determination of β-sitosterol from Salicornia herbacea L. using monolithic cartridge. Chromatographia 71:981–985

    Article  CAS  Google Scholar 

  20. Alghamdi E, Piletsky S, Piletska E (2018) Application of the bespoke solid-phase extraction protocol for extraction of physiologically-active compounds from vegetable oils. Talanta 189(1):157–165

    Article  CAS  PubMed  Google Scholar 

  21. Natália FT, Milena GM, Caio RS, Susanne R (2016) On-line solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry as a powerful technique for the determination of sulfonamide residues in soils. J Chromatogr A 1452:89–97

    Article  CAS  Google Scholar 

  22. Georges G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  23. Catalá-Icardo M, Torres-Cartas S, Meseguer-Lloret S, Gómez-Benito C, Carrasco-Correa E, Simó-Alfonso EF, Ramis-Ramos G, Herrero-Martínez JM (2017) Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography. Anal Chim Acta 960:160–167

    Article  CAS  PubMed  Google Scholar 

  24. Li XJ, Jia M, Zhao YX, Liu ZS, Akber Aisa H (2016) Preparation of phenylboronate affinity rigid monolith with macromolecular porogen. J Chromatogr A 1438:171–178

    Article  CAS  PubMed  Google Scholar 

  25. Seçmeler Ö, Üstündağ ÖG (2017) A rapid in-house validated GC-FID method for simultaneous determination of lipophilic bioactives in olive oil: squalene, α-tocopherol, and β-sitosterol. Eur J Lipid Sci Technol 119(1):1–14

    Article  CAS  Google Scholar 

  26. Martínez-Vidal JL, Garrido-Frenich A, Escobar-García MA, Romero-González R (2007) LC-MS determination of sterols in olive oil. Chromatographia 65(11–12):695–699

    Article  CAS  Google Scholar 

  27. Ma SB, Zhang YR, Qu XL, Jin FY (2015) Determination of β-sitosterol content in ethnodrug guoshangye. Agric Sci Technol 16(11):2546–2548

    Google Scholar 

  28. Qiu FY, Ding L, Cao HY (2014) Determination of β-sitosterol in oils and fats by high performance liquid chromatography. Chin Oil Fat 39(7):91–94

    CAS  Google Scholar 

  29. Zhu T, Yoon C, Row K (2011) Solid-phase extraction of β-sitosterol from Salicornia herbacea L. using molecular imprinting polymer. Chin J Chem 29:1246–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 21575033, 21505030), the Natural Science Foundation of Hebei Province (Nos. H2016201221, B2018201270), and the Hebei Province Science and Technology Research Project (grant number QN 2016128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Liu or Ligai Bai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Recent Trends in Solid-Phase Extraction for Environmental, Food and Biological Sample Preparation with guest editors Anna Laura Capriotti, Giorgia La Barbera, and Susy Piovesana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 10602 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Guo, B., Pang, X. et al. Simultaneous Determination and Enrichment of β-Sitosterol From Edible Oil Samples Using Poly(NMA-ST-co-TAIC-co-EDMA) Monolith as Sorbent with On-line SPE-HPLC. Chromatographia 82, 1285–1293 (2019). https://doi.org/10.1007/s10337-018-3646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3646-6

Keywords

Navigation