Skip to main content
Log in

Novel Monolithic Stationary Phase with Surface-Grafted Triphenyl Selector for Reversed-Phase Capillary Electrochromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A triphenylmethylamine-functionalized monolithic capillary column was newly designed for reversed-phase capillary electrochromatographic applications. Incorporation of the three phenyl rings-containing selector (also referred to as trityl selector) was achieved through post-polymerization functionalization of a generic monolithic matrix bearing nucleophilic-sensitive hydroxysuccinimide moieties. Such a 3D polymer matrix was obtained through UV-induced in situ free radical copolymerization of N-acryloxysuccinimide and ethylene dimethacrylate. The separation properties of the trityl monolithic capillary column were initially evaluated vis-à-vis polycyclic aromatic hydrocarbons, as model hydrophobic compounds, and compared to the separation ability of a benzylamine-functionalized monolithic capillary column prepared using the same generic monolithic matrix. Electrochromatographic separation of phenols and anilines was also considered, and our preliminary results suggest the occurrence of hydrophobic interactions due to the aromatic and non-polar nature of the surface-grafted trityl selector. The triphenyl monolithic capillary column exhibited relative standard deviation values (% RSD) below 4.1 % for the here-studied chromatographic parameters, namely, retention factor, selectivity, resolution, and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924

    Article  CAS  Google Scholar 

  2. Buchmeiser M (2007) Polymeric monolithic materials: syntheses, properties, functionalization and applications. Polymer 48:2187–2198

    Article  CAS  Google Scholar 

  3. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168(1–2):101–168

    Article  CAS  Google Scholar 

  4. Alothman ZA, Aqel A, Al Abdelmoneim HA, Badjah-Hadj-Ahmed AY, Al-Warthan AA (2011) Preparation and evaluation of long chain alkyl methacrylate monoliths for capillary chromatography. Chromatographia 74(1–2):1–8

    Article  CAS  Google Scholar 

  5. Hjerten S, Liao JL, Zhang R (1989) High-performance liquid chromatography on continuous polymer beds. J Chromatogr A 473:273–275

    Article  CAS  Google Scholar 

  6. Tennikova TB, Svec F, Belenkii BG (1990) High-performance membrane chromatography. a novel method of protein separation. J Liq Chromatogr 13:63–70

    Article  CAS  Google Scholar 

  7. Viklund C, Ponten E, Glad B, Irgum K, Horsted P, Svec F (1997) “Molded” macroporous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties: preparation of monoliths using photoinitiated polymerization. Chem Mater 9:463–471

    Article  CAS  Google Scholar 

  8. Lammerhofer M, Svec F, Frechet JMJ, Lindner W (2001) Capillary electrochromatography in anion exchange and normal-phase mode using monolithic stationary phases. J Chromatogr A 925:265–277

    Article  CAS  Google Scholar 

  9. Jiang Z, Smith NW, Ferguson PD, Taylor MR (2007) Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes. Anal Chem 79:1243–1250

    Article  CAS  Google Scholar 

  10. Jandera P, Stankova M (2015) The effects of the column length on the efficiency of capillary zwitterionic organic polymer monolithic columns in HILIC chromatography. Chromatographia 79(13–14):853–859

    Article  Google Scholar 

  11. Karenga S, El Rassi Z (2011) Trends in nonpolar polymer-based monolithic columns for reversed-phase capillary electrochromatography. Electrophoresis 32:90–104

    Article  CAS  Google Scholar 

  12. Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML (2013) Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci 36(17):2767–2781

    Article  CAS  Google Scholar 

  13. Urban J, Jandera P (2013) Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Anal Bioanal Chem 405(7):2123–2131

    Article  CAS  Google Scholar 

  14. Bisjak CP, Lubbad SH, Trojer L, Bonn GK (2007) Novel monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns for biopolymer chromatography. J Chromatogr A 1147:46–52

    Article  CAS  Google Scholar 

  15. Bisjak CP, Trojer L, Lubbad SH, Wieder W, Bonn GK (2007) Influence of different polymerisation parameters on the separation efficiency of monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns. J Chromatogr A 1154:269–276

    Article  CAS  Google Scholar 

  16. Lav TX, Carbonnier B, Guerrouache M, Grande D (2010) Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography. Polymer 51:5890–5894

    Article  CAS  Google Scholar 

  17. Kucerova Z, Szumski M, Buszewski B, Jandera P (2007) Alkylated poly(styrene-divinylbenzene) monolithic columns for µ-HPLC and CEC separation of phenolic acids. J Sep Sci 30:3018–3026

    Article  CAS  Google Scholar 

  18. Lav TX, Grande D, Gaillet C, Guerrouache M, Carbonnier B (2012) Porous poly(styrene-co-divinylbenzene) neutral monolith: from design and characterization to reversed-phase capillary electrochromatography applications. Macromol Chem Phys 213:64–71

    Article  CAS  Google Scholar 

  19. Szumski M, Kučerova Z, Jandera P, Buszewski B (2009) EOF in monolithic poly(styrene-co-divinylbenzene) capillary columns. Electrophoresis 30:583–588

    Article  CAS  Google Scholar 

  20. Aqel A, Alothman ZA, Yusuf K, Badjah-Hadj-Ahmed AY, Alwarthan AA (2014) Preparation and evaluation of benzyl methacrylate monoliths for capillary chromatography. J Chromatogr Sci 52(3):201–210

    Article  CAS  Google Scholar 

  21. Ou J, Gibson GTT, Oleschuk RD (2010) Fast preparation of photopolymerized poly(benzyl methacrylate-co-bisphenol A dimethacrylate) monoliths for capillary electrochromatography. J Chromatogr A 1217:3628–3634

    Article  CAS  Google Scholar 

  22. Trojer L, Lubbad SH, Bisjak CP, Bonn GK (2006) Monolithic poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) capillary columns as novel styrene stationary phases for biopolymer separation. J Chromatogr A 1117:56–66

    Article  CAS  Google Scholar 

  23. Karenga S, El Rassi Z (2010) Naphthyl methacrylate-based monolithic column for RP-CEC via hydrophobic and pi interactions. Electrophoresis 31:991–1002

    CAS  Google Scholar 

  24. Karenga S, El Rassi Z (2010) Naphthyl methacrylate-phenylene diacrylate-based monolithic column for reversed-phase capillary electrochromatography via hydrophobic and pi interactions. Electrophoresis 31:3200–3206

    Article  CAS  Google Scholar 

  25. Guerrouache M, Millot MC, Carbonnier B (2011) Capillary columns for reversed-phase CEC prepared via surface functionalization of polymer monolith with aromatic selectors. J Sep Sci 34(16–17):2271–2278

    CAS  Google Scholar 

  26. Theodorou V, Ragoussis V, Strongilos A, Zelepos E, Eleftheriou A, Dimitriou M (2005) A convenient method for the preparation of primary amines using tritylamine. Tetrahedron Lett 46(8):1357–1360

    Article  CAS  Google Scholar 

  27. Carbonnier B, Guerrouache M, Denoyel R, Millot MC (2007) CEC separation of aromatic compounds and proteins on hexylamine-functionalized N-acryloxysuccinimide monoliths. J Sep Sci 30:3000–3010

    Article  CAS  Google Scholar 

  28. Saito Y, Ohta H, Nagashima H, Itoh K, Jinno K, Okamoto M, Chen YL, Luehr G, Archer J (1994) Separation of C-60 and C-70 fullerenes with a triphenyl bonded silica phase in microcolumn liquid-chromatography. J Liq Chromatogr 17(11):2359–2372

    Article  CAS  Google Scholar 

  29. Guerrouache M, Carbonnier B, Vidal-Madjar C, Millot MC (2007) In situ functionalization of N-acryloxysuccinimide-based monolith for reversed-phase electrochromatography. J Chromatogr A 1149:368–376

    Article  CAS  Google Scholar 

  30. Valko K, Snyder LR, Glajch JL (1993) Retention in reversed-phase liquid chromatography as a function of mobile-phase composition. J Chromatogr A 656:501–520

    Article  CAS  Google Scholar 

  31. Kayillo S, Dennis GR, Shalliker RA (2006) An assessment of the retention behaviour of polycyclic aromatic hydrocarbons on reversed phase stationary phases: selectivity and retention on C18 and phenyl-type surfaces. J Chromatogr A 1126:283–297

    Article  CAS  Google Scholar 

  32. Gunasena DN, El Rassi Z (2013) Neutral, charged and stratified polar monoliths for hydrophilic interaction capillary electrochromatography. J Chromatogr A 1317:77–84

    Article  CAS  Google Scholar 

  33. Chen Y, Wang K, Liu Y, Yang H, Yao S, Chen B, Nie L, Xu G (2013) Improved sulfoalkylbetaine-based organic-silica hybrid monolith for high efficient hydrophilic interaction liquid chromatography of polar compounds. Electrophoresis 34:1877–1885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.M. is grateful to PROFAS program for financial support during his scientific visit at the University of Paris-East. S.I.K. is grateful to the Ministry of Higher Education and Scientific Research from the Government of Senegal for financial funding during his PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Carbonnier.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Tahar Mekhalif declares that he has no conflict of interest. Seydina Ibrahima Kebe declares that he has no conflict of interest. Mohamed Guerrouache declares that he has no conflict of interest. Noureddine Belattar declares that he has no conflict of interest. Marie Claude Millot declares that he has no conflict of interest. Benjamin Carbonnier declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekhalif, T., Kebe, S.I., Guerrouache, M. et al. Novel Monolithic Stationary Phase with Surface-Grafted Triphenyl Selector for Reversed-Phase Capillary Electrochromatography. Chromatographia 79, 1333–1341 (2016). https://doi.org/10.1007/s10337-016-3156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3156-3

Keywords

Navigation