Skip to main content
Log in

Influence of Graft Density of Poly (N-Isopropylacrylamide)-Grafted Silica on Separation Performance

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Poly (N-isopropylacrylamide) (PNIPAAm)-grafted silica beads with variable graft densities were prepared by atom transfer radical polymerization (ATRP). The ATRP initiator on the surface of silica was prepared through the aminopropyl silica and 2-bromoisobutyryl bromide. Acetyl chloride was used to control the graft density. The content of carbon, hydrogen, and nitrogen were measured by elemental analyzer. The graft ratio was characterized by thermogravimetric analysis and the molecular weight of the polymer was determined by GPC analysis. The retention behavior of five steroids under different temperature was studied. Furthermore, the influence of temperature and graft densities to the separation of steroid compounds was investigated. The results indicated that graft density had a significant influence on the separation efficiency. Thinner PNIPAAm chains on hydrophilic silica surface can achieve the stationary phase with enhanced temperature sensitivity and better separation property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Locke DC (1974) Selectivity in reversed-phase liquid chromatography using chemically bonded stationary phases. J Chromatogr Sci 12:433–437

    Article  CAS  Google Scholar 

  2. Horvath C, Lin HJ (1976) Movement and band spreading of unsorbed solutes in liquid chromatography. J Chromatogr A 126:401–420

    Article  CAS  Google Scholar 

  3. Karger BL, Gant JR, Martkopf A, Weiner PH (1976) Hydrophobic effects in reversed-phase liquid chromatography. J Chromatogr A 128:65–78

    Article  CAS  Google Scholar 

  4. Hu YF, Darcos V, Monge S, Li SM, Zhou Y, Su F (2014) Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers. Int J Pharm 476:31–40

    Article  CAS  Google Scholar 

  5. Zhang MM, Rabiah NI, Ngo TH, Otanicar TP, Phelan PE, Swaminathan R, Dai LL (2014) Thermo-responsiveness and tunable optical properties of asymmetric polystyrene/PNIPAM-gold composite particles. J Colloid Interface Sci 425:12–19

    Article  CAS  Google Scholar 

  6. Heskins M, Guillet JE (1968) Solution properties of poly (N-isopropylacrylamide). J Macromol Sci Chem 2:1441–14565

    Article  CAS  Google Scholar 

  7. Kanazawa H, Yamamoto K, Matsushima Y, Takai N, Kikuchi A, Sakurai Y, Okano T (1996) Temperature-responsive chromatography using poly (N-isopropylacrylamide)-modified silica. Anal Chem 68:100–105

    Article  CAS  Google Scholar 

  8. Gai QQ, Qu F, Liu ZJ, Dai RJ, Zhang YK (2010) Superparamagnetic lysozyme surface-imprinted polymer prepared by atom transfer radical polymerization and its application for protein separation. J Chromatogr A 1217:5035–5042

    Article  CAS  Google Scholar 

  9. Dai RJ, Chen L, Liu ZJ, Wang HH, Hu DY, Deng YL (2011) Preparation and characterization of temperature-responsive chromatographic column containing poly (N-isopropylacrylamide) and poly {[2-(methacryloyloxy)-ethyl] trimethylammonium chloride}. J Appl Polym Sci 121:2233–2238

    Article  CAS  Google Scholar 

  10. Liu ZJ, Liang YL, Geng FF, Ge C, Ullah K, Lv F, Dai RJ, Zhang YK, Deng YL (2012) Separation of peptides with an aqueous mobile phase by temperature-responsive chromatographic column. J Sep Sci 35:2069–2074

    Article  CAS  Google Scholar 

  11. Liu HY, Bai XM, Wei D, Yang GL (2014) High-performance liquid chromatography separation of small molecules on a porous poly (trimethylol propanetriacrylate-co-N-isopropylacrylamide-co-ethylene dimethacrylate) monolithic column. J Chromatogr A 1324:128–134

    Article  CAS  Google Scholar 

  12. Nagase K, Kobayashi J, Okano T (2009) Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 6:S293–S309

    Article  CAS  Google Scholar 

  13. Kanazawa H, Okano T (2011) Temperature-responsive chromatography for the separation of biomolecules. J Chromatogr A 1218:8738–8747

    Article  CAS  Google Scholar 

  14. Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly (N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165

    Article  CAS  Google Scholar 

  15. Li JJ, Zhou YN, Luo ZH (2014) Thermo-responsive brush copolymers with structure-tunable LCST and switchable surface wettability. Polymer 55:6552–6560

    Article  CAS  Google Scholar 

  16. Yakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T (1999) Effects of cross-linked structure on temperature-responsive hydrophobic interaction of poly (n-isopropylacrylamide) hydrogel-modified surfaces with steroids. Anal Chem 71:1125–1130

    Article  CAS  Google Scholar 

  17. Mizutani A, Nagase K, Kikuchi A, Kanazawa H, Akiyama Y, Kobayashi J, Annaka M, Okano T (2010) Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography. J Chromatogr A 1217:522–529

    Article  CAS  Google Scholar 

  18. Nagase K, Kumazaki M, Kanazawa H, Kobayashi J, Kikuchi A, Akiyama Y, Annaka M, Okano T (2010) Thermoresponsive polymer brush surfaces with hydrophobic groups for all-aqueous chromatography. Appl Mater Interface 2:1247–1253

    Article  CAS  Google Scholar 

  19. Liu ZJ, Liang YL, Geng FF, Ge C, Lv F, Dai RJ, Zhang YK, Deng YL (2012) Preparation of poly (N-isopropylacrylamide) brush grafted silica particles via surface-initiated atom transfer radica polymerization used for aqueous chromatography. Front Mater Sci 6:60–68

    Article  Google Scholar 

  20. Mizutani A, Nagase K, Kikuchi A, Kanazawa H, Akiyama Y, Kobayashi J, Annaka M, Okano T (2010) Effective separation of peptides using highly dense thermo-responsive polymer brush-grafted porous polystyrene beads. J Chromatogr B 878:2191–2198

    Article  CAS  Google Scholar 

  21. Nagase K, Akimoto AM, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2011) Effect of reaction solvent on the preparation of thermo-responsive stationary phase through a surface initiated atom transfer radical polymerization. J Chromatogr A 1218:8617–8628

    Article  CAS  Google Scholar 

  22. Mizutani A, Nagase K, Kikuchi A, Kanazawa H, Akiyama Y, Kobayashi J, Annaka M, Okano T (2010) Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides. J Chromatogr A 1217:5978–5985

    Article  CAS  Google Scholar 

  23. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2011) Thermally-modulated on/off-adsorption materials for pharmaceutical protein purification. Biomaterials 32:619–627

    Article  CAS  Google Scholar 

  24. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2008) Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24:511–517

    Article  CAS  Google Scholar 

  25. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2007) Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules. Langmuir 23:9409–9415

    Article  CAS  Google Scholar 

  26. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2008) Influence of graft interface polarity on hydration/dehydration of grafted thermoresponsive polymer brushes and steroid separation using all-aqueous chromatography. Langmuir 24:10981–10987

    Article  CAS  Google Scholar 

  27. Ye JD, Narain R (2009) Water-assisted atom transfer radical polymerization of n-isopropylacrylamide: nature of solvent and temperature. J Phys Chem B 113:676–681

    Article  CAS  Google Scholar 

  28. Park KC, Idota N, Tsukahara T (2014) Synthesis of NIPAAm-based polymer-grafted silica beads by surface-initiated ATRP using Me4Cyclam ligands and the thermo-responsive behaviors for lanthanide(III) ions. React Funct Polym 79:36–46

    Article  CAS  Google Scholar 

  29. Liu ZJ, Ullah K, Su LP, Lv F, Deng YL, Dai RJ, Li YJ, Zhang YK (2012) Switchable boronate affinity materials for thermally-modulated capture, separation and enrichment of cis-diol biomolecules. J Mater Chem 22:18753–18756

    Article  CAS  Google Scholar 

  30. Liu ZJ, Su R, Liang X, Liang YL, Deng YL, Li YJ, Dai RJ (2014) A thermally switchable chromatographic material for selective capture and rapid release of proteins and nucleotides. RSC Adv 4:15830–15834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Key Scientific Instrument and Equipment Development Project of China (No. 2012YQ04014003 and 2013YQ03059514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongji Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Liu, Z., Dai, R. et al. Influence of Graft Density of Poly (N-Isopropylacrylamide)-Grafted Silica on Separation Performance. Chromatographia 78, 1349–1357 (2015). https://doi.org/10.1007/s10337-015-2966-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2966-z

Keywords

Navigation