Skip to main content
Log in

Hyperbranched Polyglycerol Functionalized Silica Stationary Phase for Hydrophilic Interaction Liquid Chromatography

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Surface-initiated anionic-ring-opening multibranching polymerization was employed to prepare a hyperbranched polyglycerol (HPG) functionalized silica stationary phase for hydrophilic interaction liquid chromatography (HILIC). The obtained stationary phase was characterized by Fourier-transform infrared spectrometry (FT-IR) and thermogravimetric analysis (TGA). The chromatographic properties of the prepared stationary phase were systematically investigated. The abundance and multitude distribution of hydroxyl groups in HPG endowed the stationary phase with improved hydrophilicity and enhanced separation performance compared with the stationary phase functionalized with monolayer of hydroxyl groups. The stationary phase showed excellent retention of various polar compounds, such as nucleosides, necleobases, phenols and sulfanilamides, indicating great potential in the separation of complex biosamples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Alpert, J. Chromatogr. A, 1990, 499, 177.

    Article  CAS  Google Scholar 

  2. D. Garcia-Gomez, E. Rodriguez-Gonzalo, and R. Carabias-Martinez, Trends Anal. Chem., 2013, 47, 111.

    Article  CAS  Google Scholar 

  3. H. Murakami, E. Otani, T. Iwata, Y. Esaka, T. Aoyama, M. Kawasaki, T. Tanaka, S. Minatoguchi, and B. Unot, Anal. Sci., 2015, 31, 1189.

    Article  CAS  PubMed  Google Scholar 

  4. L. Qiao, X. Shi, and G. Xu, Trends Anal. Chem., 2016, 81, 23.

    Article  CAS  Google Scholar 

  5. P. Jandera and P. Janas, Anal. Chim. Acta, 2017, 967, 12.

    Article  CAS  PubMed  Google Scholar 

  6. F. E. Regnier and R. Noel, J. Chromatogr. Sci., 1976, 14, 316.

    Article  CAS  PubMed  Google Scholar 

  7. J. Wu, W. Bicker, and W. Lindner, J. Sep. Sci., 2008, 31, 1492.

    Article  CAS  PubMed  Google Scholar 

  8. A. J. Alpert, Anal. Chem., 2008, 80, 62.

    Article  CAS  PubMed  Google Scholar 

  9. D. S. Risley and M. A. Strege, Anal. Chem., 2000, 72, 1736.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Guo and S. Gaiki, J. Chromatogr. A, 2011, 1218, 5920.

    Article  CAS  PubMed  Google Scholar 

  11. T. Ikegami, K. Tomomatsu, H. Takubo, K. Horiei, and N. Tanaka, J. Chromatogr. A, 2008, 1184, 474.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Fu, Z. Guo, T. Liang, X. Zhang, Q. Xu, and X. Liang, Anal. Methods, 2010, 2, 217.

    Article  CAS  Google Scholar 

  13. T. Yoshida, H. Hamada, H. Murakawa, H. Yoshimoto, T. Tobino, and K. Toda, Anal. Sci., 2012, 28, 179.

    Article  CAS  PubMed  Google Scholar 

  14. N. Takayama, L. W. Lim, and T. Takeuchi, Anal. Sci., 2017, 33, 619.

    Article  CAS  PubMed  Google Scholar 

  15. H. Jiang, H. Yuan, Y. Qu, Y. Liang, B. Jiang, Q. Wu, N. Deng, Z. Liang, L. Zhang, and Y. Zhang, Talanta, 2016, 146, 225.

    Article  CAS  PubMed  Google Scholar 

  16. W. Shao, J. Liu, K. Yang, Y. Liang, Y. Weng, and S. Li, Talanta, 2016, 158, 361.

    Article  CAS  PubMed  Google Scholar 

  17. G. Huang, Z. Xiong, H. Qin, J. Zhu, Z. Sun, Y. Zhang, X. Peng, J. Ou, and H. Zou, Anal. Chim. Acta, 2014, 809, 61.

    Article  CAS  PubMed  Google Scholar 

  18. E. Wikberg, J. J. Verhage, C. Viklund, and K. Irgum, J. Sep. Sci., 2009, 32, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. K. Wolski, M. Szuwarzynski, and S. Zapotoczny, Chem. Sci., 2015, 6, 1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. Hemström, M. Szumski, and K. Irgum, Anal. Chem., 2006, 78, 7098.

    Article  PubMed  Google Scholar 

  21. W. Jiang, G. Fischer, Y. Girmay, and K. Irgum, J. Chromatogr. A, 2006, 1127, 82.

    Article  CAS  PubMed  Google Scholar 

  22. D. Yu, Z. Guo, A. Shen, J. Yan, X. Dong, G. Jin, Z. Long, L. Liang, and X. Liang, Talanta, 2016, 161, 860.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Zheng, S. Li, Z. Weng, and C. Gao, Chem. Soc. Rev., 2015, 44, 4091.

    Article  CAS  PubMed  Google Scholar 

  24. D. Pranantyo, L. Xu, K. G. Neoh, E. T. Kang, and S. L. Teo, Ind. Eng. Chem. Res., 2016, 55, 1890.

    Article  CAS  Google Scholar 

  25. M. A. Mata-Gómez, S. Yaman, J. A. Valencia-Gallegos, C. Tari, M. Rito-Palomares, and J. González-Valdez, J. Chromatogr. A, 2016, 1443, 191.

    Article  PubMed  Google Scholar 

  26. Y. Li, J. Yang, J. Jin, X. Sun, L. Wang, and J. Chen, J. Chromatogr. A, 2014, 1337, 133.

    Article  CAS  PubMed  Google Scholar 

  27. C. Kip and A. Tuncel, Chromatographia, 2017, 80, 565.

    Article  CAS  Google Scholar 

  28. S. Lei, S. Yu, and C. Zhao, J. Chromatogr. Sci., 2001, 39, 280.

    Article  CAS  PubMed  Google Scholar 

  29. K. Sakai, T. C. Teng, A. Katada, T. Harada, K. Yoshida, K. Yamanaka, Y. Asami, M. Sakata, C. Hirayama, and M. Kunitake, Chem. Mater., 2003, 15, 4091.

    Article  CAS  Google Scholar 

  30. M. Jáckowska, S. Bocian, and B. Buszewski, Analyst, 2012, 137, 4610.

    Article  PubMed  Google Scholar 

  31. S. Bocian, S. Studzinska, and B. Buszewski, Talanta, 2014, 127, 133.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Peng, Y. Hou, F. Zhang, G. Shen, and B. Yang, Anal. Bioanal. Chem., 2016, 408, 3633.

    Article  CAS  PubMed  Google Scholar 

  33. M. Weinhart, I. Grunwald, M. Wyszogrodzka, L. Gaetjen, A. Hartwig, and R. Haag, Chem.—Asian J., 2010, 5, 1992.

    Article  CAS  PubMed  Google Scholar 

  34. N. P. Dinh, T. Jonsson, and K. Irgum, J. Chromatogr. A, 2011, 1218, 5880.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Hou, F. Zhang, X. Liang, B. Yang, X. Liu, and P. K. Dasgupta, Anal. Chem., 2016, 88, 4676.

    Article  CAS  PubMed  Google Scholar 

  36. G. Jin, Z. Guo, F. Zhang, X. Xue, Y. Jin, and X. Liang, Talanta, 2008, 76, 522.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (grant No. 21405134, 21575123 and 21675139), the Jiangsu Science and Technology Project (BK20170471), the Talent Introduction Project of Yancheng Institute of Technology (XJ201509) and the Practical Innovation Program for Postgraduates of Specialty Degree in Universities of Jiangsu (SJLX16_0676). This work also sponsored by Jiangsu Qinglan Project and Jiangsu Industry University Foresight Joint Research Project (BY2016065-36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dahe Fan or Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, X., Zhang, L. et al. Hyperbranched Polyglycerol Functionalized Silica Stationary Phase for Hydrophilic Interaction Liquid Chromatography. ANAL. SCI. 34, 433–438 (2018). https://doi.org/10.2116/analsci.17P486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P486

Keywords

Navigation