Skip to main content
Log in

Magnetic Solid Phase Extraction Coupled with HPLC Towards Removal of Pigments and Impurities from Leaf-derived Paclitaxel Extractions of Taxus baccata and Optimization via Response Surface Methodology

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A reusable and cost-effective magnetic graphite oxide (Fe3O4NPs@GO) nanocomposite was fabricated and applied for pre-purification of paclitaxel from leaf-derived crude extract of Taxus baccata. Furthermore, the potential roles of three crucial criteria (i.e., adsorbent dosage, sorption temperature and agitation/shaking power) on the two responses [i.e., efficiency of plant pigments removal (EPPR) and efficiency of taxol purity (ETP)] were examined and simultaneously optimized through response surface methodology. The nanocomposite was accurately characterized using TEM, AFM, BET, FT-IR, Raman and VSM. Moreover, for both proposed second-degree polynomial regression models, highly significant correlations were achieved between the experimental and predicted data (p < 0.0001). Meanwhile, the optimum conditions to simultaneously acquire the maximum EPPR (94.0 %) and ETP (11.4 %) were recorded as adsorbent dosage of 37.7 g L−1, sorption temperature of 30.7 °C and agitation power of 153.1 rpm; and the predictive results were confirmed using experimental rechecking survey. Interestingly, upon five consecutive treatments, the nanocomposite still exhibited substantial potency in eliminating large amounts of plant pigments and impurities (up to 90 %), without significant reduction on sorption capacity and magnetism thereof. Our results demonstrated that the current nanocomposite, as SPE sorbent for MSPE, could be a simple, fast and reusable approach for HPLC-based purification studies of paclitaxel, and probably other plant secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tubiana-Hulin M (2005) Cancer Treat Rev 31:S3–S9

    Article  CAS  Google Scholar 

  2. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) J Am Chem Soc 93:2325–2327

    Article  CAS  Google Scholar 

  3. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC (1989) Ann Intern Med 111:273–279

    Article  CAS  Google Scholar 

  4. Cragg GM, Newman DJ (2005) J Ethnopharmacol 100:72–79

    Article  CAS  Google Scholar 

  5. Watchueng J, Kamnaing P, Gao J-M, Kiyota T, Yeboah F, Konishi Y (2011) J Chromatogr A 1218:2929–2935

    Article  CAS  Google Scholar 

  6. Nasiri J, Naghavi MR, Alizadeh H, Moghadam MRF, Mashouf A, Nabizadeh M (2015) Acta Physiol Plant 37:1–15

    Article  Google Scholar 

  7. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  8. Pyo S-H, Choi H-J, Han B-H (2006) J Chromatogr A 1123:15–21

    Article  CAS  Google Scholar 

  9. Rao KV, Bhakuni RS, Juchum J, Davies RM (1996) J Liq Chromatogr Relat Technol 19:427–447

    Article  CAS  Google Scholar 

  10. Yang X, Liu K, Xie M (1998) J Chromatogr A 813:201–204

    Article  CAS  Google Scholar 

  11. Miller RW, Powell RG, Smith CR Jr, Arnold E, Clardy J (1981) J Org Chem 46:1469–1474

    Article  CAS  Google Scholar 

  12. Wu D-J, Ma Z, Wang N-H (1999) J Chromatogr A 855:71–89

    Article  CAS  Google Scholar 

  13. Jang HR, Oh H-J, Kim J-H, Jung KY (2013) Microporous Mesoporous Mater 165:219–227

    Article  CAS  Google Scholar 

  14. Liu L, Feng T, Wang C, Wu Q, Wang Z (2014) Microchim Acta:1–7

  15. Pyo S-H, Song B-K, Ju C-H, Han B-H, Choi H-J (2005) Process Biochem 40:1113–1117

    Article  CAS  Google Scholar 

  16. Kim J-H, Kang I-S, Choi H-K, Hong S-S, Lee H-S (2000) Biotechnol Lett 22:1753–1756

    Article  CAS  Google Scholar 

  17. Sivashankar R, Sathya A, Vasantharaj K, Sivasubramanian V (2014) Environ Nanotechnol Monit Manag 1:36–49

    Article  Google Scholar 

  18. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) Carbon 50:2337–2346

    Article  CAS  Google Scholar 

  19. Pérez RA, Albero B, Tadeo JL, Molero E, Sánchez-Brunete C (2014) Chromatographia 77:837–843

    Article  Google Scholar 

  20. Xie J, Liu T, Song G, Hu Y, Deng C (2013) Chromatographia 76:535–540

    Article  CAS  Google Scholar 

  21. Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M (2012) Talanta 101:388–395

    Article  CAS  Google Scholar 

  22. Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) J Chromatogr A 1218:7936–7942

    Article  CAS  Google Scholar 

  23. Wang W, Li Y, Wu Q, Wang C, Zang X, Wang Z (2012) Anal Methods 4:766–772

    Article  CAS  Google Scholar 

  24. Hu X-j, Liu Y-g, Wang H, Chen A-w, Zeng G-m, Liu S-m, Guo Y-m, Hu X, Li T-t, Wang Y-q (2013) Sep Purif Technol 108:189–195

    Article  CAS  Google Scholar 

  25. Wu Q, Liu M, Ma X, Wang W, Wang C, Zang X, Wang Z (2012) Microchim Acta 177:23–30

    Article  CAS  Google Scholar 

  26. Deng J-H, Zhang X-R, Zeng G-M, Gong J-L, Niu Q-Y, Liang J (2013) Chem Eng J 226:189–200

    Article  CAS  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  28. Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) ACS Appl Mater Interfaces 3:1821–1826

    Article  CAS  Google Scholar 

  29. Mujeeb M, Alam S, Akhtar M, Najmi A, Aqil M, Vismail M (2013) Planta Med 79:PH25

    Google Scholar 

  30. Feng S, Luo Z, Zhong Z, Jiang L, Tang K (2014) J Sep Sci 37:1308–1314

    Article  CAS  Google Scholar 

  31. Zhang H, Zhang L, Hu X, Zhou Y, Ding C, Yang R, Wang X, Li D (2014) Sep Sci Technol 49:673–681

    Article  Google Scholar 

  32. Singh SK, Singh SK, Tripathi VR, Khare SK, Garg SK (2011) Microb Cell Fact 10:114–127

    Article  CAS  Google Scholar 

  33. Otašević B, Milovanović S, Zečević M, Golubović J, Protić A (2014) Chromatographia 77:109–118

    Article  Google Scholar 

  34. Naghavi M, Motamedi E, Nasiri J, Alizadeh H, Moghadam MF, Mashouf A (2015) J Nanopart Res 17:1–15

    Article  CAS  Google Scholar 

  35. Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  36. Kassaee M, Motamedi E, Majdi M (2011) Chem Eng J 172:540–549

    Article  CAS  Google Scholar 

  37. Richheimer SL, Tinnermeier DM, Timmons DW (1992) Anal Chem 64:2323–2326

    Article  CAS  Google Scholar 

  38. Jeon K-Y, Kim J-H (2009) Process Biochem 44:736–741

    Article  CAS  Google Scholar 

  39. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965–977

    Article  CAS  Google Scholar 

  40. GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ (2012) Water Sci Technol 65:1795–1800

    Article  CAS  Google Scholar 

  41. Khataee A, Safarpour M, Zarei M, Aber S (2012) J Mol Catal A Chem 363:58–68

    Article  Google Scholar 

  42. Gharibzahedi SMT, Mousavi SM, Khodaiyan F, Hamedi M (2012) Int J Biol Macromol 50:376–384

    Article  CAS  Google Scholar 

  43. Ferrari A, Robertson J (2000) Phys Rev B 61:14095

    Article  CAS  Google Scholar 

  44. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  45. Tchomgui-Kamga E, Ngameni E, Darchen A (2010) J Colloid Interface Sci 346:494–499

    Article  CAS  Google Scholar 

  46. Samavati V (2013) Carbohydr Polym 95:588–597

    Article  CAS  Google Scholar 

  47. Khataee A, Fathinia M, Aber S, Zarei M (2010) J Hazard Mater 181:886–897

    Article  CAS  Google Scholar 

  48. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    Google Scholar 

  49. Prakash Maran J, Mekala V, Manikandan S (2013) Carbohydr Polym 92:2018–2026

    Article  CAS  Google Scholar 

  50. Zou Y, Chen X, Yang W, Liu S (2011) Carbohydr Polym 84:503–508

    Article  CAS  Google Scholar 

  51. Fan F-L, Qin Z, Bai J, Rong W-D, Fan F-Y, Tian W, Wu X-L, Wang Y, Zhao L (2012) J Environ Radioact 106:40–46

    Article  CAS  Google Scholar 

  52. Anbia M, Ghaffari A (2009) Appl Surf Sci 255:9487–9492

    Article  CAS  Google Scholar 

  53. Bulut Y, Aydın H (2006) Desalination 194:259–267

    Article  CAS  Google Scholar 

  54. Aksu Z, Kutsal T (1991) J Chem Technol Biotechnol 52:109–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by Iran National Science Foundation (INSF, No. 91058040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaber Nasiri or Mohammad Reza Naghavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, J., Naghavi, M.R., Alizadeh, H. et al. Magnetic Solid Phase Extraction Coupled with HPLC Towards Removal of Pigments and Impurities from Leaf-derived Paclitaxel Extractions of Taxus baccata and Optimization via Response Surface Methodology. Chromatographia 78, 1143–1157 (2015). https://doi.org/10.1007/s10337-015-2925-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2925-8

Keywords

Navigation