Skip to main content
Log in

A Comparison of One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography for Decomposition Odour Profiling Using Inter-Year Replicate Field Trials

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Decomposition odour analysis involves the chemical profiling of volatile organic compounds produced by decomposing remains. This is important for areas of forensic science that rely on the detection of decomposition odour such as insect attraction to carrion, positive alerts of cadaver dogs to decomposing remains, and the development of field instrumentation for search and recovery procedures. Traditionally decomposition odour analysis has been performed using gas chromatography–quadrupole mass spectrometry (GC–qMS); however, the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS) is rapidly becoming more prevalent. The objective of this study was to compare GC–qMS and GC×GC–TOFMS for decomposition odour profiling based on inter-year replicate field studies using decomposing porcine remains. The increased peak capacity, sensitivity and selectivity afforded by GC×GC–TOFMS allowed peak co-elutions, chromatographic artefacts, and dynamic range to be more easily addressed and managed. Furthermore, the software associated with GC×GC–TOFMS provided several additional benefits including improved peak alignment between samples and increased consistency of reported results, overall allowing for additional statistical tests to be applied following data processing. Future GC–qMS results could be improved by implementing some of these software-associated procedures, potentially reducing the magnitude of variation observed between GC–qMS and GC×GC–TOFMS studies. One-dimensional GC analysis may also benefit substantially from coupling with TOFMS detection to provide an indirect increase in peak capacity using deconvolution. However, the wealth of information gained by using GC×GC–TOFMS in decomposition odour profiling is undoubtedly an asset in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boumba VA, Ziavrou KS, Vougiouklakis T (2008) Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 174:133–151. doi:10.1016/j.forsciint.2007.03.018

    Article  CAS  Google Scholar 

  2. LeBlanc HN, Logan JG (2010) Exploiting insect olfaction in forensic entomology. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Current Concepts in Forensic Entomology. Springer, New York, pp 205–222

    Google Scholar 

  3. Paczkowski S, Maibaum F, Paczkowska M, Schütz S (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57:1497–1506. doi:10.1111/j.1556-4029.2012.02245.x

    Article  Google Scholar 

  4. Kalinová B, Podskalská H, Růzicka J, Hoskovec M (2009) Irresistible bouquet of death-how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 96:889–899. doi:10.1007/s00114-009-0545-6

    Article  Google Scholar 

  5. Lorenzo N, Wan T, Harper RJ et al (2003) Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal Bioanal Chem 376:1212–1224. doi:10.1007/s00216-003-2018-7

    Article  CAS  Google Scholar 

  6. Vass AA, Smith RR, Thompson CV (2004) Decompositional odor analysis database. J Forensic Sci 49:760–769

    Article  CAS  Google Scholar 

  7. Vass AA, Smith RR, Thompson CV et al (2008) Odor analysis of decomposing buried human remains. J Forensic Sci 53:384–391. doi:10.1111/j.1556-4029.2008.00680.x

    Article  CAS  Google Scholar 

  8. Statheropoulos M, Spiliopoulou C, Agapiou A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155. doi:10.1016/j.forsciint.2004.08.015

    Article  CAS  Google Scholar 

  9. Statheropoulos M, Agapiou A, Spiliopoulou C et al (2007) Environmental aspects of VOCs evolved in the early stages of human decomposition. Sci Total Environ 385:221–227. doi:10.1016/j.scitotenv.2007.07.003

    Article  CAS  Google Scholar 

  10. Dekeirsschieter J, Verheggen FJ, Gohy M et al (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53. doi:10.1016/j.forsciint.2009.03.034

    Article  CAS  Google Scholar 

  11. Vass AA (2012) Odor mortis. Forensic Sci Int 222:234–241. doi:10.1016/j.forsciint.2012.06.006

    Article  Google Scholar 

  12. Rosier E, Cuypers E, Dekens M et al (2014) Development and validation of a new TD-GC/MS method and its applicability in the search for human and animal decomposition products. Anal Bioanal Chem 406:3611–3619. doi:10.1007/s00216-014-7741-8

    Article  CAS  Google Scholar 

  13. Hoffman EM, Curran AM, Dulgerian N et al (2009) Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 186:6–13. doi:10.1016/j.forsciint.2008.12.022

    Article  CAS  Google Scholar 

  14. Forbes SL, Rust L, Trebilcock K et al (2014) Effect of age and storage conditions on the volatile organic compound profile of blood. Forensic Sci Med Pathol 10:570–582. doi:10.1007/s12024-014-9610-3

    Article  CAS  Google Scholar 

  15. Cablk ME, Szelagowski EE, Sagebiel JC (2012) Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int 220:118–125. doi:10.1016/j.forsciint.2012.02.007

    Article  CAS  Google Scholar 

  16. Kasper J, Mumm R, Ruther J (2012) The composition of carcass volatile profiles in relation to storage time and climate conditions. Forensic Sci Int 223:64–71. doi:10.1016/j.forsciint.2012.08.001

    Article  CAS  Google Scholar 

  17. Dekeirsschieter J, Stefanuto P-H, Brasseur C et al (2012) Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC–TOFMS). PLoS One 7:e39005. doi:10.1371/journal.pone.0039005

    Article  CAS  Google Scholar 

  18. Brasseur C, Dekeirsschieter J, Schotsmans EMJ et al (2012) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J Chromatogr A 1255:163–170. doi:10.1016/j.chroma.2012.03.048

    Article  CAS  Google Scholar 

  19. Statheropoulos M, Spiliopoulou C, Agapiou A (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210:154–163. doi:10.1016/j.forsciint.2011.02.023

    Article  CAS  Google Scholar 

  20. Stadler S, Stefanuto P-H, Byer JD et al (2012) Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. J Chromatogr A 1255:202–206. doi:10.1016/j.chroma.2012.04.001

    Article  CAS  Google Scholar 

  21. Stadler S, Stefanuto P-H, Brokl M et al (2013) Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 85:998–1005. doi:10.1021/ac302614y

    Article  CAS  Google Scholar 

  22. Stefanuto P-H, Perrault K, Stadler S et al (2014) Reading cadaveric decomposition chemistry with a new pair of glasses. ChemPlusChem 79:786–789. doi:10.1002/cplu.201402003

    Article  CAS  Google Scholar 

  23. Perrault KA, Stefanuto P-H, Stuart BH et al (2015) Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. J Sep Sci 38:73–80. doi:10.1002/jssc.201400935

    Article  CAS  Google Scholar 

  24. Focant J-F, Stefanuto P-H, Brasseur C et al (2014) Forensic cadaveric decomposition profiling by GC × GC–TOFMS analysis of VOCS. Chem Bull Kazakh Natl Univ 4:177–186

    Google Scholar 

  25. Forbes SL, Perrault KA, Stefanuto P-H et al (2014) Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One 9:e113681

    Article  Google Scholar 

  26. Murphy RE, Schure MR, Foley JP (1998) Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem 70:1585–1594

    Article  CAS  Google Scholar 

  27. Tranchida PQ, Dugo P, Dugo G, Mondello L (2004) Comprehensive two-dimensional chromatography in food analysis. J Chromatogr A 1054:3–16. doi:10.1016/j.chroma.2004.07.095

    Article  CAS  Google Scholar 

  28. Tranchida PQ, Donato P, Cacciola F et al (2013) Potential of comprehensive chromatography in food analysis. TrAC Trends Anal Chem 52:186–205. doi:10.1016/j.trac.2013.07.008

    Article  CAS  Google Scholar 

  29. Panić O, Górecki T (2006) Comprehensive two-dimensional gas chromatography (GCxGC) in environmental analysis and monitoring. Anal Bioanal Chem 386:1013–1023. doi:10.1007/s00216-006-0568-1

    Article  Google Scholar 

  30. Almstetter MF, Oefner PJ, Dettmer K (2012) Comprehensive two-dimensional gas chromatography in metabolomics. Anal Bioanal Chem 402:1993–2013. doi:10.1007/s00216-011-5630-y

    Article  CAS  Google Scholar 

  31. Von Mühlen C, Zini CA, Caramão EB, Marriott PJ (2006) Applications of comprehensive two-dimensional gas chromatography to the characterization of petrochemical and related samples. J Chromatogr A 1105:39–50. doi:10.1016/j.chroma.2005.09.036

    Article  Google Scholar 

  32. Adahchour M, Beens J, Vreuls R, Brinkman UAT (2006) Recent developments in comprehensive two-dimensional gas chromatography (GC × GC) III. Applications for petrochemicals and organohalogens. TrAC Trends Anal Chem 25:726–741. doi:10.1016/j.trac.2006.03.005

    Article  CAS  Google Scholar 

  33. Nizio KD, McGinitie TM, Harynuk JJ (2012) Comprehensive multidimensional separations for the analysis of petroleum. J Chromatogr A 1255:12–23

    Article  CAS  Google Scholar 

  34. Frysinger G, Gaines RB (2002) GC × GC—a new analytical tool for environmental forensics. Environ Forensics 3:27–34

    CAS  Google Scholar 

  35. Frysinger GS, Gaines RB (2002) Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. J Forensic Sci 47:471–482

    CAS  Google Scholar 

  36. Forbes SL, Perrault KA (2014) Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS One 9:e95107. doi:10.1371/journal.pone.0095107

    Article  Google Scholar 

  37. Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci 50:618–626

    Article  Google Scholar 

  38. Payne J (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  39. Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers—an overview. J Forensic Leg Med 18:6–9. doi:10.1016/j.jflm.2010.10.003

    Article  Google Scholar 

  40. Richards CS, Villet MH (2009) Data quality in thermal summation development models for forensically important blowflies. Med Vet Entomol 23:269–276

    Article  CAS  Google Scholar 

  41. Archer M (2004) Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice 44:35–41

    Article  CAS  Google Scholar 

  42. Stadler S, Desaulniers J-P, Forbes SL (2014) Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int J Legal Med. doi:10.1007/s00414-014-1024-y

    Google Scholar 

  43. Tipple CA, Caldwell PT, Kile BM et al (2014) Comprehensive characterization of commercially available canine training aids. Forensic Sci Int 242:242–254. doi:10.1016/j.forsciint.2014.06.033

    Article  Google Scholar 

  44. Koh Y, Pasikanti KK, Yap CW, Chan ECY (2010) Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. J Chromatogr A 1217:8308–8316. doi:10.1016/j.chroma.2010.10.101

    Article  CAS  Google Scholar 

  45. Schoenly KG, Haskell NH, Mills DK, Bieme-Ndi C (2006) Recreating death’s acre in the school yard: using pig carcasses as model corpses to teach concepts of forensic entomology & ecological succession. Am Biol Teach 68:402–410

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all research group members and extended contacts who have contributed to the planning and execution of field work over the past several years: Maiken Ueland, Kate Trebilcock, LaTara Rust, Amanda Troobnikoff, Laura McGrath, Rebecca Buis, Assoc. Prof. Barbara Stuart, Dr. Paul Thomas, Chris Watson and Robert Chatterton. Clare Sullivan is gratefully acknowledged for her assistance with GC–qMS samples. The authors also wish to thank laboratory technical staff, Dr. David Bishop and Dr. Ronald Shimmon, for their ongoing support. Finally, SGE Analytical Science is recognised for donating research supplies while the Australian Research Council (ARC) and the University of Technology, Sydney (UTS) are acknowledged for providing financial support for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelynn A. Perrault.

Additional information

K. A. Perrault and K. D. Nizio contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrault, K.A., Nizio, K.D. & Forbes, S.L. A Comparison of One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography for Decomposition Odour Profiling Using Inter-Year Replicate Field Trials. Chromatographia 78, 1057–1070 (2015). https://doi.org/10.1007/s10337-015-2916-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2916-9

Keywords

Navigation