Skip to main content
Log in

Multi-Pesticide Analysis in Sediment by GC-EI-MS/MS Using Programmed Temperature Vaporization–Large Volume Injection Technique

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A sensitive, selective and high throughput gas chromatography–tandem mass spectrometry method using programmable temperature vaporization–large volume injection mode (PTV-LVI-GC-MS/MS) for the analysis of 30 organochlorine pesticides (OCPs) including toxaphenes in sediments was developed. The PTV-LV injection settings, viz. inlet temperature, split flow, injection phase time, and injection speed were optimized for 50 µL injection. A significant increase in sensitivity was accomplished as compared with that obtained by the conventional 1 µL cold splitless injection. Average LVI recoveries for OCPs were in the range 58–133 % with low % RSD in instrument precision (<12 %). The method detection limits achieved were 0.04–0.92 µg kg−1. The method recovery ranged from 80 to 120 % with <10 % RSD for more than 83 % of targeted analytes fortified at 10 µg kg−1 in sediments. The PTV-LVI-GC-MS/MS allows simultaneous determination and unambiguous confirmation of trace OCPs and toxaphene congeners, which significantly streamlines and improves the trace organic analysis in the environmental surveillance and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Managing potentially toxic substances in Canada: a state of the debate report by the National Round Table on the Environment and the Economy (NRTEE) (2001)

  2. Fernández-Bayo JD, Saison C, Voltz M, Disko U, Hofmann D, Berns AE (2013) Sci Total Environ 463:395–403

    Article  Google Scholar 

  3. Namiki S, Otani T, Seike N (2013) Soil Sci Plant Nutr 59:669–679

    Article  CAS  Google Scholar 

  4. O’Driscoll K, Mayer B, Su J, Mathis M (2014) Ocean Sci 10:397–409

    Article  Google Scholar 

  5. Barrett JR (2013) Environ Health Perspect 121:A61–62

    Article  Google Scholar 

  6. Ren A, Qiu XH, Jin L, Ma J, Li ZW, Zhang L, Zhu HP, Finnell RH, Zhu T (2011) Proc Natl Acad Sci USA 108:12770–12775

    Article  CAS  Google Scholar 

  7. Sarkar S (2009) Nutr Food Sci 39:360–369

    Article  Google Scholar 

  8. Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, Van Bavel B, Lind L (2012) Environ Int 47:115–120

    Article  CAS  Google Scholar 

  9. Ramu K, Kajiwara N, Sudaryanto A, Isobe T (2007) Environ Sci Technol 41:4580–4586

    Article  CAS  Google Scholar 

  10. Hernndez F, Portol S, Pitarch TE, Pez FJL (2005) Anal Chem 77:7662–7672

    Article  Google Scholar 

  11. Murtaj B, Como E, Nuro A, Marku E, Emiri A (2013) J Int Environ Appl Sci 8:652–657

    CAS  Google Scholar 

  12. Carro N, Garcia I, Ignacio M, Mouteira A (2004) Environ Int 30:457–466

    Article  CAS  Google Scholar 

  13. Fernandez-Bayo JD, Saison C, Voltz M, Disko U, Hofmann D, Berns Anne E (2013) Sci Total Environ 463:395–403

    Article  Google Scholar 

  14. Alcantara-Concepcion V, Cram S, Gibson R, de Ponce LC, Mazari-Hiriart M (2013) J AOAC Int 96:854–863

    Article  CAS  Google Scholar 

  15. US EPA Method 3620C (1994) US Government Printing Office, Washington, USA

  16. Gao Y, Zhang HJ, Chen JP, Zhang Q, Tian YZ, Qi PP, Yu ZK (2011) Anal Chim Acta 703:187–193

    Article  CAS  Google Scholar 

  17. Garcia-Rodriguez D, Cela-Torrijos R, Lorenzo-Ferreira RA, Carro-Diaz AM (2012) Food Chem 135:259–267

    Article  CAS  Google Scholar 

  18. Yin G, Asplund L, Qiu Y, Zhou YH, Wang H, Yao ZL, Jiang JB, Bergman A (2014) Environ Sci Pollut Res 944–953

  19. Chambers L, Badgett E (2010) LCGC N Am Suppl 41

  20. Sannino A, Mambriani P, Bandini M, Bolzoni L (1996) J AOAC Int 79:1434–1446

    CAS  Google Scholar 

  21. US EPA Method 3660 (1994) US Government Printing Office, Washington, USA

  22. Muscalu A, Reiner E, Liss S (2008) Organohalogen Compd 70:42–45

    CAS  Google Scholar 

  23. Jones L, Tritt M (2005) A unique approach for evaluating aroclor interferences of chlorinated pesticides in tissue for Portland Harbor Superfund Site, Poster Presentation SETAC

  24. Takasuga T, Nakano T, Shibata Y (2012) Organohalogen Compd 74:1437–1440

    CAS  Google Scholar 

  25. Kalachova K, Pulkrabova J, Cajka T, Drabova L, Stupak M, Hajslova J (2013) Anal Bioanal Chem 405:7803

    Article  CAS  Google Scholar 

  26. Vorkamp K, Moeller S, Falk K, Riget FF, Thomsen M (2014) Soerensen PB Sci Total Environ 468:614–621

    Article  Google Scholar 

  27. UNEP (2003) UNEP workshop to develop a global POPs monitoring programme to support the effectiveness evaluation of the Stockholm Convention, IOMC

  28. Lao WJ, Tsukada D, Maruya KA (2012) J Chromatogr A 1270:262–268

    Article  CAS  Google Scholar 

  29. Xia XY, Crimmins B, Hopke PK, Pagano JJ, Milligan MS, Holsen TM (2009) Anal Bioanal Chem 395:457–463

    Article  CAS  Google Scholar 

  30. Espana Amortegui JC, Guerrero Dallos JA (2014) Food Addit Contam A 31:676–687

    Article  CAS  Google Scholar 

  31. Wittsiepe J, Nestola M, Kohne M, Zinn P, Wilhelm M (2014) J Chromatogr B 945:217–224

    Article  Google Scholar 

  32. Erger C, Balsaa P, Werres F, Schmidt TC (2013) Anal Bioanal Chem 405:5215–5223

    Article  CAS  Google Scholar 

  33. Walorczyk S (2012) J Chromatogr A 1222:98–108

    Article  CAS  Google Scholar 

  34. US EPA Method 8081b (2007) US Government Printing Office, Washington, USA, revision 2

  35. Krumwiede D Workshop: large volume injection for POPs analysis, thermo fisher scientific

  36. Janssen HG (1998) Sample introduction in capillary gas chromatography—theory and experiments, GERSTEL

  37. Concha-Grana E, Turnes-Carou MI, Muniategui-Lorenzo S, Lopez-Mahıa P, Fern´andez-Fern´andez E, Prada-Rodr´ıguez D (2004) J Chromatogr A 1047:147–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express sincere thanks to Dr. C. M. Lau, Government Chemist and Dr. Della W. M. Sin, Assistant Government Chemist of the Government Laboratory of HKSAR, for their supports and encouragement during the course of study. The contents of this paper do not necessarily reflect the views of the Government of the HKSAR, nor does mention of trade name or commercial products constitute endorsement or recommendations of use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny Ho-man Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.Hm., Tang, H.Po. Multi-Pesticide Analysis in Sediment by GC-EI-MS/MS Using Programmed Temperature Vaporization–Large Volume Injection Technique. Chromatographia 78, 695–705 (2015). https://doi.org/10.1007/s10337-015-2876-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2876-0

Keywords

Navigation