Skip to main content
Log in

Hyperspeed method for analyzing organochloride pesticides in sediments using two-dimensional gas chromatography–time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pesticides are traditionally analyzed using conventional gas chromatography. When fast chromatography is associated with comprehensive two-dimensional gas chromatography (GC × GC), the resulting method presents high-resolution separation associated with a higher chromatographic speed. In the present work, a method for pesticide analysis in sediment samples was developed using quick, easy, cheap, effective, rugged, and safe extraction (QuEChERS) and a hyperspeed GC × GC separation. The QuEChERS procedure reported in the literature was extended to incorporate the analytes tetrachloro-m-xylene, decachlorobiphenyl, trans-chlordane, chlordane, endosulfan lactone, and endosulfan ether. To understand the chromatographic method improvement achieved, the recent concept of average theoretical peak time (ATPT) was used. The ATPT improved from that of the traditional GC × GC separation to the proposed method, and the separation speed can be classified as a hyperspeed separation. The limit of detection and quantitation of the compounds in the standard mix ranged from 0.39 to 17.96 µg L−1 and 1.18 to 54.43 µg L−1, respectively. The method showed acceptable RSD% (relative standard deviation) values and little interference of the sediment matrix in the extraction procedure. The developed method was applied to the determination of a mixture of 19 compounds in 16 sediment samples from the Pirapetinga River and Paraíba do Sul River in Brazil.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allinson G, Allinson M, Bui AD, Zhang P, Croatto G, Wightwick A, Rose G, Walters R. Pesticide and trace metals in surface waters and sediments of rivers entering the Corner Inlet Marine National Park, Victoria, Australia. Environ Sci Pollut. 2016;23:5881–91. https://doi.org/10.1007/s11356-015-5795-6.

    Article  CAS  Google Scholar 

  2. Barbieri MV, Postigo C, Monllor-Alcaraz LS, Barceló D, López de Alda M. A reliable LC-MS/MS-based method for trace level determination of 50 medium to highly polar pesticide residues in sediments and ecological risk assessment. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-02188-0.

  3. Li P, Wang Y, Huang W, Yao H, Xue B, Xu Y. Sixty-year sedimentary record of DDTs, HCHs, CHLs and endosulfan from emerging development gulfs: a case study in the Beibu Gulf, South China Sea. Bull Environ Contam Toxicol. 2014;92:23–9. https://doi.org/10.1007/s00128-013-1130-4.

    Article  CAS  PubMed  Google Scholar 

  4. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ. 2010;408:2966–84. https://doi.org/10.1016/j.scitotenv.2009.10.077.

    Article  CAS  PubMed  Google Scholar 

  5. Becker L, Scheringer M, Schenker U, Hungerbühler K. Assessment of the environmental persistence and long-range transport of endosulfan. Environ Pollut. 2011;159:1737–43. https://doi.org/10.1016/j.envpol.2011.02.012.

    Article  CAS  PubMed  Google Scholar 

  6. Bussian BM, Pandelova M, Lehnik-Habrink P, Aichner B, Henkelmann B, Schramm KW. Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils. Environ Pollut. 2015;206:661–6. https://doi.org/10.1016/j.envpol.2015.08.023.

    Article  CAS  PubMed  Google Scholar 

  7. Chau NDG, Sebesvari Z, Amelung W, Renaud FG. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Pollut. 2015;22:9042–58. https://doi.org/10.1007/s11356-014-4034-x.

    Article  CAS  Google Scholar 

  8. Lang Y, Cao Z, Nie X. Extraction of organochlorine pesticides in sediments using soxhlet, ultrasonic and accelerated solvent extraction techniques. J Ocean Univ China. 2005;4:173–6. https://doi.org/10.1007/s11802-005-0012-8.

    Article  CAS  Google Scholar 

  9. Lazartigues A, Wiest L, Baudot R, Thomas M, Feidt C, Cren-Olivé C. Multiresidue method to quantify pesticides in fish muscle by QuEChERS-based extraction and LC-MS/MS. Anal Bioanal Chem. 2011;400:2185–93. https://doi.org/10.1007/s00216-011-4945-z.

    Article  CAS  PubMed  Google Scholar 

  10. Jabali Y, Millet M, El-Hoz M. Optimization of a DI-SPME-GC–MS/MS method for multi-residue analysis of pesticides in waters. Microchem J. 2019;147:83–92. https://doi.org/10.1016/j.microc.2019.03.004.

    Article  CAS  Google Scholar 

  11. Gripp L, Carreira RL, Moreira D, Scofield AL, Massone CG. Method development and application to sediments for multi-residue analysis of organic contaminants using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2022;414:5845–55. https://doi.org/10.1007/s00216-022-04086-4.

    Article  CAS  PubMed  Google Scholar 

  12. Naseri K, Miri M, Zeinali M, Zeinali T. Evaluation of organochlorine pesticide (OCP) residues in meat and edible organs, Iran. Environ Sci Pollut. 2019;26:30980–7. https://doi.org/10.1007/s11356-019-06235-2.

    Article  CAS  Google Scholar 

  13. Gómez MJ, Herrera S, Solé D, García-Calvo E, Fernández-Alba AR. Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem. 2011;83:2638–47. https://doi.org/10.1021/ac102909g.

    Article  CAS  PubMed  Google Scholar 

  14. Reiner EJ, Clement RE, Okey AB. Marvin CH Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal Bioanal Chem. 2006;386:791–806. https://doi.org/10.1007/s00216-006-0479-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bordajandi LR, Ramos JJ, Sanz J, Gonzalez MJ, Ramos L. Comprehensive two-dimensional gas chromatography in the screening of persistent organohalogenated pollutants in environmental samples. J Chromatogr A. 2008;1186:312–24. https://doi.org/10.1016/j.chroma.2007.12.013.

    Article  CAS  PubMed  Google Scholar 

  16. Cajka T, Hajšlová J. Gas chromatography–high-resolution time-of-flight mass spectrometry in pesticide residue analysis: advantages and limitations. J Chromatogr A. 2004;1058:251–61. https://doi.org/10.1016/j.chroma.2004.07.097.

    Article  CAS  PubMed  Google Scholar 

  17. Buah-Kwofie A, Humphries MS. The distribution of organochlorine pesticides in sediments from iSimangaliso Wetland Park: ecological risks and implications for conservation in a biodiversity hotspot. Environ Pollut. 2017;229:715–23. https://doi.org/10.1016/j.envpol.2017.07.031.

    Article  CAS  PubMed  Google Scholar 

  18. Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM. Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia. USA, Chemosphere. 2018;209:496–507. https://doi.org/10.1016/j.chemosphere.2018.06.116.

    Article  CAS  PubMed  Google Scholar 

  19. Muscalu AM, Edwards M, Górecki T, Reiner EJ. Evaluation of a single-stage consumable-free modulator for comprehensive two-dimensional gas chromatography: analysis of polychlorinated biphenyls, organochlorine pesticides and chlorobenzenes. J Chromatogr A. 2015;1391:93–101. https://doi.org/10.1016/j.chroma.2015.02.074.

    Article  CAS  PubMed  Google Scholar 

  20. Giocastro B, Piparo M, Tranchida PQ, Mondello L. Cryogenic modulation fast GC × GC–MS using a 10 m microbore column combination: concept, method optimization and application. J Sep Sci. 2018;41:1112–7. https://doi.org/10.1002/jssc.201700824.

    Article  CAS  PubMed  Google Scholar 

  21. Brunelli C, Bicchi C, Di Stilo A, Salomone A, Vincenti M. High-speed gas chromatography in doping control: fast-GC and fast-GC/MS determination of β-adrenoceptor ligands and diuretics. J Sep Sci. 2006;29:2765–71. https://doi.org/10.1002/jssc.200500387.

    Article  CAS  PubMed  Google Scholar 

  22. Cajka T, Hajslova J, Lacina O, Mastovska K, Lehotay SJ. Rapid analysis of multiple pesticide residues in fruit-based baby food using programmed temperature vaporiser injection–low-pressure gas chromatography–high-resolution time-of-flight mass spectrometry. J Chromatogr A. 2008;1186:281–94. https://doi.org/10.1016/j.chroma.2007.12.009.

    Article  CAS  PubMed  Google Scholar 

  23. Ðurović-Pejčev RD, Bursić VP, Zeremski TM. Comparison of QuEChERS with traditional sample preparation methods in the determination of multiclass pesticides in soil. J AOAC Int. 2019;102:46–51. https://doi.org/10.5740/jaoacint.18-0296.

    Article  CAS  Google Scholar 

  24. Ðurović-Pejčev RD, Đorđević TM, Bursić VP. Determination of multi-class herbicides in soil by liquid-solid extraction coupled with headspace solid phase microextraction method. Phase microextraction method, J. Serb. Chem Soc. 2016; 81: 8. https://doi.org/10.2298/JSC151123044D.

  25. Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ). Relatório de Visita e Avaliação do Acidente Ambiental no Rio Paraíba do Sul: trecho entre São Fidélis e São João da Barra. 2008. https://pt.scribd.com/document/21984682/Relatorio-Acidente-SERVATIS-DERRAMAMENTO-DE-8-mil-litros-de-AGROTOXICO-NO-RIO-PARAIBA-DO-SUL-RJ. Accessed 03 Apr 2022.

  26. Čajka T, Maštovská K, Lehotay SJ, Hajšlová J. Use of automated direct sample introduction with analyte protectants in the GC–MS analysis of pesticide residues. J Sep Sci. 2005;28:1048–60. https://doi.org/10.1002/jssc.200500050.

    Article  CAS  PubMed  Google Scholar 

  27. von Mühlen C, Mangelli LNR, Marriott PJ. Average theoretical peak time as a metric to analytical speed in one dimensional and multidimensional gas chromatographic separations. J Chromatogr A. 2022;1667: 462887. https://doi.org/10.1016/j.chroma.2022.462887.

    Article  CAS  Google Scholar 

  28. Buah-Kwofie A, Humphries MS. Validation of a modified QuEChERS method for the analysis of organochlorine pesticides in fatty biological tissues using two-dimensional gas chromatography. J Chromatogr B. 2019;1105:85–92. https://doi.org/10.1016/j.jchromb.2018.12.010.

    Article  CAS  Google Scholar 

  29. Dei Cas M, Casagni E, Arnoldi S, Gambaro V, Roda G. Screening of new psychoactive substances (NPS) by gas chromatography/time of flight mass spectrometry (GC/MS-TOF) and application to 63 cases of judicial seizure. Forensic Sci Int Synergy. 2019;1:71–8. https://doi.org/10.1016/j.fsisyn.2019.04.003.

    Article  PubMed  Google Scholar 

  30. Khummueng W, Harynuk J, Marriott PJ. Modulation ratio in comprehensive two-dimensional gas chromatography. Anal Chem. 2006;78:4578. https://doi.org/10.1021/ac052270b.

    Article  CAS  PubMed  Google Scholar 

  31. Belarbi S, Vivier M, Zaghouani W, Sloovere AD, Agasse-Peulon V, Cardinael P. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC–MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chem. 2021;359:129932. https://doi.org/10.1016/j.foodchem.2021.129932.

    Article  CAS  PubMed  Google Scholar 

  32. Cherta L, Beltran J, López F, Hernández F. Application of fast gas chromatography–mass spectrometry in combination with the QuEChERS method for the determination of pesticide residues in fruits and vegetables. Food Anal Methods. 2012;6:1170–87. https://doi.org/10.1007/s12161-012-9524-1.

    Article  Google Scholar 

  33. Niell S, Jesús F, Pérez C, Mendoza Y, Díaz R, Franco J, Cesio V, Heinzen H. QuEChERS adaptability for the analysis of pesticide residues in beehive products seeking the development of an agroecosystem sustainability monitor. J Agric Food Chem. 2015;63:4484–92. https://doi.org/10.1021/acs.jafc.5b00795.

    Article  CAS  PubMed  Google Scholar 

  34. Norli HR, Christiansen A, Deribe E. Application of QuEChERS method for extraction of selected persistent organic pollutants in fish tissue and analysis by gas chromatography mass spectrometry. J Chromatogr A. 2011;1218:7234–41. https://doi.org/10.1016/j.chroma.2011.08.050.

    Article  CAS  PubMed  Google Scholar 

  35. Rashid A, Nawaz S, Barker H, Ahmad I, Ashraf M. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography–tandem mass spectrometry. J Chromatogr A. 2010;1217:2933–9. https://doi.org/10.1016/j.chroma.2010.02.060.

    Article  CAS  PubMed  Google Scholar 

  36. Canlı O, Çetintürk K, Öktem Olgun EE. Determination of 117 endocrine disruptors (EDCs) in water using SBSE TD–GC-MS/MS under the European Water Framework Directive. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-020-02553-4.

    Article  PubMed  Google Scholar 

  37. International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use (ICH), Guideline Q2(R1)-validation of analytical procedures: text and methodology, ICH Secretariat, c/o IFPMA, Geneva, 2005, pp. 1.

  38. Agência Nacional de Vigilância Sanitária (ANVISA); Resolução RE nº 899. 2003. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0899_29_05_2003.html. Accessed 16 Apr 2022.

  39. Berenguer-Rico V, Wilms I. Heteroscedasticity testing after outlier removal. Econom Rev. 2020;40:51–85. https://doi.org/10.1080/07474938.2020.1735749.

    Article  Google Scholar 

  40. Ribani M, Bottoli CBG, Collins CH, Jardim ICSF. Validação em Métodos Cromatográficos e Eletroforéticos. Quim Nova. 2004;27:771–80. https://doi.org/10.1590/S0100-40422004000500017.

    Article  CAS  Google Scholar 

  41. Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO); Orientações sobre Validação de Métodos de Ensaios Químicos. DOQ-CGCRE-008, Revisão 09. 2020. https://app.sogi.com.br/Manager/texto/arquivo/exibir/arquivo?eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9AFFIjAvMTM4ODM3NS9TR19SZXF1aXNpdG9fTGVnYWxfVGV4dG8vMC8wL0RPUS1DZ2NyZS04XzA5LnBkZi8wLzAiAFFBcMYdNmecpDn0m0Dj4vzJmvMJZMAYtW6mtkIlj0C7fk. Accessed 3 Apr 2022.

  42. Goméz MJ, Herrera S, Solé D, García-Calvo E, Fernández-Alba AR. Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem. 2011;83:2638–47. https://doi.org/10.1021/ac102909g.

    Article  CAS  PubMed  Google Scholar 

  43. Brighenti V, Licata M, Pedrazzi T, Maran D, Bertelli D, Pellati F, Benvenuti S. Development of a new method for the analysis of cannabinoids in honey by means of high-performance liquid chromatography coupled with electrospray ionisation-tandem mass spectrometry detection. J Chromatogr A. 2019;1597:179–86. https://doi.org/10.1016/j.chroma.2019.03.034.

    Article  CAS  PubMed  Google Scholar 

  44. Rutkowska E, Łozowicka B, Kaczyński P. Compensation of matrix effects in seed matrices followed by gas chromatography-tandem mass spectrometry analysis of pesticide residues. J Chromatogr A. 2020; 460738. https://doi.org/10.1016/j.chroma.2019.460738.

  45. Demanboro AC. Gestão ambiental e sustentabilidade na macrometrópole paulista-Bacia do Rio Paraíba do Sul. Rev Soc Nat. 2015;27:515–30. https://doi.org/10.1590/1982-451320150311.

    Article  Google Scholar 

  46. Targa MS, Batista GT. Benefits and legacy of the water crisis in Brazil. Rev Ambient Água. 2015;10:234–9. https://doi.org/10.4136/1980-993x.

    Article  Google Scholar 

Download references

Funding

The authors acknowledge CAPES-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and the financial support of the Middle Paraíba do Sul Basin Committee through AGEVAP–Associação Pró-Gestão das Águas da Bacia Hidrográfica do Rio Paraíba do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carin von Mühlen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazza, F.C., de Souza Sampaio, N.A. & von Mühlen, C. Hyperspeed method for analyzing organochloride pesticides in sediments using two-dimensional gas chromatography–time-of-flight mass spectrometry. Anal Bioanal Chem 415, 2629–2640 (2023). https://doi.org/10.1007/s00216-022-04464-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04464-y

Keywords

Navigation