Skip to main content
Log in

The Development of the In Situ Modification of 1st Generation Analytical Scale Silica Monoliths

  • original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Analytical scale silica monoliths are commercially limited to three column selectivities (bare silica, C8 and C18). An in situ modification is reported in detail to overcome this barrier and allow for any functionality of choice to be bonded to the silica surface of the monolithic stationary phase support. The modification method was conducted on a commercial bare silica column to bond the C18 moiety to the silica surface through a silylation reaction. The C18 type of stationary phase was chosen, as this is the most commonly bonded functionality for the majority of stationary phases used for high-performance liquid chromatography (HPLC) separations. The C18-modified monolith’s performance was compared to a commercial C18 monolithic and a particle packed column of the same analytical scale column dimensions (100 × 4.6 mm). The modified C18 monolith proved to be of high quality with an efficiency of 73,267 N m−1, fast analysis times (operated at flow rates up to 3 mL min−1 using a conventional 400 bar HPLC system) and improved resolution of a set of polar and non-polar substituted aromatics in comparison to a commercial C18 monolith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nakanishi K, Soga N (1991) Phase separation in gelling silica-organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceram Soc 74:2518–2530

    Article  CAS  Google Scholar 

  2. Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid. IV. Effect of chemical additives. J Non Cryst Solids 142:45–54

    Article  CAS  Google Scholar 

  3. Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid. III. Effect of catalytic condition. J Non Cryst Solids 142:36–44

    Article  CAS  Google Scholar 

  4. Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid. I. Gel formation behavior and effect of solvent composition. J Non Cryst Solids 139:1–13

    Article  CAS  Google Scholar 

  5. Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid. II. Effects of molecular weight and temperature. J Non Cryst Solids 139:14–24

    Article  CAS  Google Scholar 

  6. Nakanishi K, Takahashi R, Soga N (1992) Dual-porosity silica gels by polymer-incorporated sol–gel process. J Non Cryst Solids 147:291–295

    Article  Google Scholar 

  7. Nakanishi K, Soga N (1993) Inorganic porous column. Japan patent 5-200, 392

  8. Nakanishi K, Soga N (1993) Production of inorganic porous body. Japan patent 5-208,642

  9. Nakanishi K, Soga N (1997) Inorganic porous material and process for making same. US patent 5,624,875

  10. Lubda D, Muller E (2003) Method for producing monolithic chromatography. US patent application 2003/0155676 a1

  11. Siouffi AM (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000:801–818

    Article  CAS  Google Scholar 

  12. Qiu H, Liang X, Sun M, Jiang S (2011) Development of silica-based stationary phases for high-performance liquid chromatography. Anal Bioanal Chem 399:3307–3322

    Article  CAS  Google Scholar 

  13. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  14. Cabrera K (2004) Applications of silica-based monolithic HPLC columns. J Sep Sci 27:843–852

    Article  CAS  Google Scholar 

  15. Ali I, Gaitonde VD, Aboul-Enein HY (2009) Monolithic silica stationary phases in liquid chromatography. J Chromatogr Sci 47:432–442

    Article  CAS  Google Scholar 

  16. Engelhardt H, Orth P (1987) Alkoxy silanes for the preparation of silica based stationary phases with bonded polar functional groups. J Liq Chromatogr 10:1999–2022

    Article  CAS  Google Scholar 

  17. Buchmeiser MR (2001) New synthetic ways for the preparation of high-performance liquid chromatography supports. J Chromatogr A 918:233–236

    Article  CAS  Google Scholar 

  18. Engelhardt H (2011) Bonded stationary phases. Chromatogr Sci 101:47–75

    Article  CAS  Google Scholar 

  19. Hanai T (2000) New developments in liquid-chromatographic stationary phases. Adv Chromatogr 40:315–357

    CAS  Google Scholar 

  20. Silanes (2012) Gelest Incorporated, Morrisville, USA. http://www.gelest.com/gelest/forms/GeneralPages/prod_list.aspx?pltype=1&classtype=silanes. Accessed 15 Oct 2012

  21. Soliven A, Dennis GR, Guiochon G, Hilder EF, Haddad PR, Shalliker RA (2010) Cyano bonded silica monolith—development of an in situ modification method for analytical scale columns. J Chromatogr A 1217:6085–6091

    Article  CAS  Google Scholar 

  22. van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci 5:271–289

    Article  Google Scholar 

  23. Miyabe K, Guiochon G (2003) Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography. J Sep Sci 26:155–173

    Article  CAS  Google Scholar 

  24. Kirkland JJ, Snyder LR (1979) Introduction to modern liquid chromatography. Wiley, New York

    Google Scholar 

  25. Stevenson PG, Soliven A, Dennis GR, Gritti F, Guiochon G, Shalliker RA (2010) Pi-selective stationary phases: (III) Influence of the propyl phenyl ligand density on the aromatic and methylene selectivity of aromatic compounds in reversed phase liquid chromatography. J Chromatogr A 1217:5377–5383

    Article  CAS  Google Scholar 

  26. Stevenson PG, Soliven A, Dennis GR, Shalliker RA (2009) Phenyl-type and C1 stationary phases for environmentally friendlier chromatography. J Sep Sci 32:3880–3889

    Article  CAS  Google Scholar 

  27. Capello C, Hellweg S, Badertscher B, Betschart H, Hungerbühler K (2007) Environmental assessment of waste-solvent treatment options. Part I. The ecosolvent tool. J Ind Ecol 11:26–38

    Article  CAS  Google Scholar 

  28. Snyder LR, Dolan JW (2007) High-performance gradient elution the application of the linear-solvent-strength model. Wiley, Hoboken

    Google Scholar 

  29. Gritti F, Guiochon G (2011) Measurement of the eddy diffusion term in chromatographic columns I. Application to the first generation of 4.6 mm I.D monolithic columns. J Chromatogr A 1218:5216–5227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council’s Discovery funding scheme (DP0987318). E.F.H. is the recipient of an ARC Future Fellowship (FT0990521). We gratefully acknowledge Dr. Thomas Rodemann (Central Science Laboratory, University of Tasmania) for assistance with elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianne Soliven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliven, A., Dennis, G.R., Hilder, E.F. et al. The Development of the In Situ Modification of 1st Generation Analytical Scale Silica Monoliths. Chromatographia 77, 663–671 (2014). https://doi.org/10.1007/s10337-014-2667-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2667-z

Keywords

Navigation