Skip to main content
Log in

Phospholipid-Modified ODS Monolithic Column for Affinity Prediction of Hydrophobic Basic Drugs to Phospholipids

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A phospholipid-modified octadecyl silica (ODS) monolithic column was prepared and its interaction with basic hydrophobic drugs was studied. These drugs are of interest in pharmaceutical research because of their strong interaction with biomembranes. The amount of dimyristoylphosphatidylcholine trapped on the ODS surface was reproducible, and the results of the trinitrobenzenesulfonic acid assay suggested the formation of a monolayer on the surface. Both hydrophobic and electrostatic interactions acted between the model drugs and the phosphatidylcholine. The column was stable for 10 days at least. The column was applied to the affinity screening of basic drugs to phospholipid. Good correlation was obtained between log k and log P for the basic drugs lidocaine, quinidine, propranolol, imipramine, and chlorpromazine. The monolithic silica column allowed highly hydrophobic basic drugs such as imipramine and chlorpromazine to be assayed; these are difficult to analyze by using a conventional particle-packed column. These drugs were clearly separated from acidic drugs naproxen and warfarin on the log k versus log P plots. The thermodynamic studies revealed that the retention of the drug was an enthalpy-driven process, and that the decrease in enthalpy for the phospholipid-modified ODS monolithic column was larger than those for immobilized artificial membrane columns. Our results suggest that the phospholipid-modified ODS monolithic column is applicable to affinity screening of drugs to phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dorsey JG, Khaledi MG (1993) J Chromatogr A 656:485–499

    Article  CAS  Google Scholar 

  2. Ong S, Cal S, Bernal C, Rhee D, Qiu X, Pidgeon C (1994) Anal Chem 66:782–792

    Article  CAS  Google Scholar 

  3. Valko K, Du CM, Bevan CD, Reynolds DP, Abraham MH (2000) J Pharm Sci 89:1085–1096

    Article  CAS  Google Scholar 

  4. Kamimori H, Konishi M (2002) Biomed Chromatogr 16:61–67

    Article  CAS  Google Scholar 

  5. Godard T, Grushka E (2012) J Chromatogr A 1218:1211–1218

    Article  Google Scholar 

  6. Luo H, Zheng C, Cheng Y (2007) J Chromatogr A 1176:100–106

    Article  CAS  Google Scholar 

  7. Fiske CH, Subbarow Y (1929) Science 70(1816):381–382

    Article  CAS  Google Scholar 

  8. Gruber HJ, Schindler H (1994) Biochim Biophys Acta 1189:212–224

    Article  CAS  Google Scholar 

  9. Mafé S, Manzanares JA, Kontturi K (1998) J Electroanal Chem 457:155–162

    Article  Google Scholar 

  10. Lukacova V, Peng M, Fanucci G, Tandlich R, Hinderliter A, Maity B, Manivannan E, Cook GR, Balaz S (2007) J Biomol Screen 12:186–202

    Article  CAS  Google Scholar 

  11. Fraceto LF, Pinto LMA, Franzoni L, Braga AAC, Spisni A, Schreier S, de Paula E (2002) Biophys Chem 99:229–243

    Article  CAS  Google Scholar 

  12. Siarheyava A, Lopez JJ, Glaubitz C (2006) Biochemistry 45:6203–6211

    Article  Google Scholar 

  13. Evanics F, Prosser RS (2005) Anal Chim Acta 534:21–29

    Article  CAS  Google Scholar 

  14. Nerdal W, Gundersen SA, Thorsen V, Høiland H, Holmsen H (2000) Biochim Biophys Acta 1464:165–175

    Article  CAS  Google Scholar 

  15. Österberg T, Svensson M, Lundahl P (2001) Eur J Pharm Sci 12:427–439

    Article  Google Scholar 

  16. Barbato F, Caliendo G, La Rotonda MI, Morrica P, Silipo C, Vittoria A (1990) Farmaco 45:647–663

    CAS  Google Scholar 

  17. Barbato F, La Rotonda MI, Quaglia F (1997) J Pharm Sci 86:225–229

    Article  CAS  Google Scholar 

  18. Avdeef A, Box KJ, Comer JE, Hibbert C, Tam KY (1998) Pharm Res 15:209–215

    Article  CAS  Google Scholar 

  19. Buchwald P, Bodor N (1998) Curr Med Chem 5:353–380

    CAS  Google Scholar 

  20. Platts JA, Abraham MH, Butina D, Hersey A (2000) J Chem Inf Comput Sci 40:71–80

    Article  CAS  Google Scholar 

  21. Jia Z, Mei L, Lin F, Huang S, Killion RB (2003) J Chromatogr A 1007:203–308

    Article  CAS  Google Scholar 

  22. Lüllmann H, Wehling M (1979) Biochem Pharmacol 28:3409–3415

    Article  Google Scholar 

  23. Abdiche YN, Myszka DG (2004) Anal Biochem 328:233–243

    Article  CAS  Google Scholar 

  24. Kuroda Y, Saito M, Hamaguchi R (2011) J Pharm Sci Res 3:1298–1301

    CAS  Google Scholar 

  25. Tsirkin I, Grushka E (2001) J Chromatogr A919:245–254

    Article  Google Scholar 

  26. Ichimori H, Hata T, Matsuki H, Kaneshina S (1998) Biochim Biophys Acta 1414:165–174

    Article  CAS  Google Scholar 

  27. Ong S, Pidgeon C (1995) Anal Chem 67:2119–2128

    Article  CAS  Google Scholar 

  28. Ottiger C, Wunderli-Allenspach H (1999) Pharm Res 16:643–650

    Article  CAS  Google Scholar 

  29. Pidgeon C, Ong S, Choi H, Liu H (1994) Anal Chem 66:2701–2709

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Kuroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, Y., Hamaguchi, R. & Tanimoto, T. Phospholipid-Modified ODS Monolithic Column for Affinity Prediction of Hydrophobic Basic Drugs to Phospholipids. Chromatographia 77, 405–411 (2014). https://doi.org/10.1007/s10337-013-2621-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2621-5

Keywords

Navigation