Skip to main content
Log in

Simultaneous Determination of Impurities in Ropinirole Tablets by an Improved HPLC Method Coupled with Diode Array Detection

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A gradient HPLC method coupled with diode array detection was developed and fully validated for the analysis of impurities in ropinirole using a Kromasil® C8 100 Å (250 × 4.6 mm, 5 μm) column with a flow rate 1.0 mL min−1 and detection at 250 nm. The mobile phase component A consisted of a mixture of 19.6 mM aqueous potassium dihydrogen phosphate–acetonitrile (98:2 v/v), pH adjusted to 7.0 with triethylamine and the mobile phase component B consisted of acetonitrile. The method was validated in terms of linearity, sensitivity, precision, accuracy and stability. The calibration curves for ropinirole and its five impurities showed good linearity (r > 0.998) within the calibration ranges tested. The intra- and inter-day RSD values were <3.9 %, while the relative percentage error E r was <5.8 % for all compounds. Accelerated stability studies performed under various stress conditions including oxidation, hydrolysis and UV light irradiation at 254 nm proved the selectivity of the procedure. Long-term stability studies performed on blistered tablets and under various conditions of heat and humidity indicate the presence of four of the studied impurities in less than 0.07 %. The method was applied successfully to the detection and determination of ropinirole impurities in pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Müller T (2012) Transl Neurodegener 1:1–12

    Article  Google Scholar 

  2. Jost WH, Angersbach D (2005) Drug Rev 11:253–272

    Article  CAS  Google Scholar 

  3. Ravikumar K, Sridhar B (2006) Acta Cryst 622:265–267

    Google Scholar 

  4. Matheson AJ, Spencer CM (2000) Drugs 60:115–137

    Article  CAS  Google Scholar 

  5. Maratos EC, Jackson MJ, Pearce RKB, Jenner P (2001) Mov Disord 16:631–641

    Article  CAS  Google Scholar 

  6. Bogan RK, Fry JM, Schmidt MH, Carson SW, Ritchie SY (2006) Mayo Clin Proc 81:17–27

    Article  CAS  Google Scholar 

  7. Swagzdis JE, Gifford R, Mco BA (1985) J Chromatogr 345:203–208

    Article  CAS  Google Scholar 

  8. Ramji JV, Keogh IP, Blake TJ, Broom C, Chenery RJ, Citerone DR (1999) Xenobiotica 29:311–325

    Article  CAS  Google Scholar 

  9. Beattie IG, Blake TJA (1989) J Chromatogr 474:123–138

    Article  CAS  Google Scholar 

  10. Bhatt J, Jangid A, Shetty R, Shah B, Kambli S, Subbaiah G, Singh S (2006) J Pharm Biomed Anal 40:1202–1208

    Article  CAS  Google Scholar 

  11. Bharathi DV, Jagadeesh B, Kumar SS, Lakshmi RN, Hotha KK (2009) Biomed Chromatogr 23:557–562

    Article  CAS  Google Scholar 

  12. Onal A (2006) Chromatographia 64:459–461

    Article  CAS  Google Scholar 

  13. Aydogmus Z (2008) Spectrochim Acta 70:69–78

    Article  Google Scholar 

  14. Coufal P, Stulik K, Claeessens HA, Hardy MJ, Webb M (1999) J Chromatogr B 732:437–444

    Article  CAS  Google Scholar 

  15. Coufal P, Stulık K, Claessens HA, Hardy MJ, Webb M (1998) J Chromatogr B 720:197–204

    Article  CAS  Google Scholar 

  16. Krishnaiah C, Murthy MV, Reddy AR, Kumara R, Mukkantib K (2010) J Chin Chem Soc 57:348–355

    CAS  Google Scholar 

  17. Mustafa G, Baboota S, Ali J, Ahuja A (2012) J Pharm Innov 7:47–55

    Article  Google Scholar 

  18. Parmar G, Sharma S, Singh K, Bansal G (2009) Chromatographia 69:199–206

    Article  CAS  Google Scholar 

  19. Sahasrabuddhey B, Nautiyal R, Acharya H, Khyade S, Luthra PK, Deshpande PB (2007) J Pharm Biomed Anal 43:1587–1593

    Article  CAS  Google Scholar 

  20. Zissis KD, Brereton RG, Escott R (1997) Analyst 122:1007–1033

    Article  CAS  Google Scholar 

  21. Jancic-Stojanovic B, Malenovic A, Ivanovic D, Rakic T, Medenica M (2009) J Chromatogr A 1216:1263–1269

    Article  CAS  Google Scholar 

  22. International conference on harmonisation (ICH) Topic Q3A, Impurities in new drug substances, June 2008, Revision 2, http://www.ich.org

  23. USP 36/NF 31 (2013), pp. 5080

  24. B’Hymer C (2006) J Chromatogr Sci 44:200–204

    Article  Google Scholar 

  25. International conference on harmonisation (ICH) of technical requirements for registration of pharmaceuticals for human use, Topic Q2 (R1): validation of analytical procedures: text and methodology (2005). http://www.ich.org

  26. ICH Harmonised tripartite guideline validation of analytical procedures: Text and Methodology, Topic Q2(R1), November 2005. http://www.ich.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Panderi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakouris, A., Samara, V., Kalaskani, A. et al. Simultaneous Determination of Impurities in Ropinirole Tablets by an Improved HPLC Method Coupled with Diode Array Detection. Chromatographia 77, 447–457 (2014). https://doi.org/10.1007/s10337-013-2617-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2617-1

Keywords

Navigation