Skip to main content
Log in

A New Strategy for Fast Chiral Screening by Combining HPLC-DAD with a Multivariate Curve Resolution–Alternating Least Squares Algorithm

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A strategy aimed at developing faster chiral screening approaches is proposed in this paper by mixing samples and simultaneously screening the resulting mixture of racemates. The data matrix of the mixture obtained by diode array detector or mass spectrometry is deconvoluted into resolved chromatograms and spectra through a multivariate curve resolution–alternating least squares algorithm. The individual racemates are then identified through the resolved UV spectra, and enantiomeric excess ratios can be measured via the resolved chromatograms. Two representative experiments were carried out to verify the feasibility of the strategy. A mixture containing five pairs of racemic solutes was successfully screened on Chiralcel OD column in one-fifth of the conventional analysis time. Another mixture containing 10 racemates gained nine-tenths of the original screening time on three CSPs with a predictive accuracy above 90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caldwell J (1995) Chem Ind 6:176–179

    Google Scholar 

  2. Brown JR (1994) In: Subramanian G (ed) A practical approach to chiral separations by liquid chromatography. VCH, Weinheim

  3. Nelson TD, Welch CJ, Rosen JD, Smitrovich JH, Huffman MA, McNamara JM, Mathre DJ (2004) Chirality 16:609–613

    Article  CAS  Google Scholar 

  4. Welch CJ, Albaneze-Walker J, Leonard WR, Biba M, DaSilva J, Henderson D, Laing B, Mathre DJ, Spencer S, Bu X, Wang T (2005) Org Process Res Dev 9:198–205

    Article  CAS  Google Scholar 

  5. Zhang Y, Wu D, Wang-Iverson DB, Tymiak AA (2005) Drug Discov Today 10:571–577

    Article  CAS  Google Scholar 

  6. Devos C, Sandra K, Sandra P (2002) J Pharm Biomed Anal 27:507–514

    Article  CAS  Google Scholar 

  7. Zhao Y, Woo G, Thomas S, Semin D, Sandra P (2003) J Chromatogr A 1003:157–166

    Article  CAS  Google Scholar 

  8. White C (2005) J Chromatogr A 1074:163–173

    Article  CAS  Google Scholar 

  9. Saavedra L, Nickerson B, Borjas RE, Lynen F, Sandra P (2008) J Chromatogr B 875:248–253

    Article  CAS  Google Scholar 

  10. Perrin C, Vu VA, Matthijs N, Maftouh M, Massart DL, Vander Heyden Y (2002) J Chromatogr A 947:69–83

    Article  CAS  Google Scholar 

  11. Zhang T, Nguyen D, Franco P (2008) J Chromatogr A 1191:214–222

    Article  CAS  Google Scholar 

  12. Younes AA, Mangelings D, Vander Heyden Y (2011) J Pharm Biomed Anal 55:414–423

    Article  CAS  Google Scholar 

  13. Ahuja S (ed) (1991) Chiral separations by liquid chromatography. In: ACS symposium series No. 471. American Chemical Society, Washington DC

  14. Subramanian G (ed) (1994) A practical approach to chiral separation by liquid chromatography. VCH, Weinheim

    Google Scholar 

  15. Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2008) Chem Asian J 3:1494–1499

    Article  CAS  Google Scholar 

  16. Chen XM, Yamamoto C, Okamoto Y (2007) Pure Appl Chem 79:1561–1573

    Article  CAS  Google Scholar 

  17. Tao WA, Cooks RG (2003) Anal Chem 75:25A–31A

    Article  CAS  Google Scholar 

  18. Brewer BN, Zu C, Koscho ME (2005) Chirality 17:456–463

    Article  CAS  Google Scholar 

  19. Reetz MT (2001) Angew Chem Int Ed 40:284–310

    Article  CAS  Google Scholar 

  20. Zhang Y, Watts W, Nogle L, McConnell O (2004) J Chromatogr A 1049:75–84

    CAS  Google Scholar 

  21. Sajonz P, Schafer W, Gong X, Shultz S, Rosner T, Welch CJ (2007) J Chromatogr A 1145:149–154

    Article  CAS  Google Scholar 

  22. Danzer K, Currie LA (1998) Pure Appl Chem 70:993–1014

    Article  CAS  Google Scholar 

  23. Sanchez E, Kowalski BR (1986) Anal Chem 58:496–499

    Article  CAS  Google Scholar 

  24. Sanchez E, Kowalski BR (1990) J Chemometrics 4:29–45

    Article  CAS  Google Scholar 

  25. De Juan A, Casassas E, Tauler R (2002) In: Myers RA (ed) Encyclopedia of analytical chemistry, vol 11. Wiley, UK

    Google Scholar 

  26. Linder M, Sundberg R (1998) Chemom Intell Lab Syst 42:159–178

    Article  CAS  Google Scholar 

  27. Linder M, Sundberg R (2002) J Chemometrics 16:12–27

    Article  CAS  Google Scholar 

  28. Wu HL, Shibukawa M, Oguma K (1998) J Chemometrics 12:1–26

    Article  CAS  Google Scholar 

  29. Booksh KS, Kowalski BR (1994) Anal Chem 66:A782–A791

    Article  Google Scholar 

  30. Gargallo R, Tauler R, Cuesta Sanchez F, Massart DL (1996) Trends Anal Chem 15:279–286

    CAS  Google Scholar 

  31. Escandar GM, Olivieri AC, Faber NM, Goicoechea HC, de la Peña AM, Poppi RJ (2007) Trends Anal Chem 26:752–765

    Article  CAS  Google Scholar 

  32. Valverde RS, Gil García MD, Martínez Galera M, Goicoechea HC (2006) Talanta 70:774–783

    Article  CAS  Google Scholar 

  33. Espinosa Mansilla A, de la Peña AM, Goicoechea HC, Olivieri AC (2004) Appl Spectrosc 58:83–90

    Article  CAS  Google Scholar 

  34. Comas E, Gimeno RA, Ferré J, Marcé RM, Borrull F, Rius FX (2004) J Chromatogr A 1035:195–202

    Article  CAS  Google Scholar 

  35. Zhang F, Li H (2005) Electrophoresis 26:1692–1702

    Article  CAS  Google Scholar 

  36. Siano GG, Pérez IS, Gil García MD, Galera MM, Goicoechea HC (2011) Talanta 85:264–275

    Article  CAS  Google Scholar 

  37. Smilde AK, Tauler R, Henshaw JM, Burgess LW, Kowalski BR (1994) Anal Chem 66:3345–3351

    Article  CAS  Google Scholar 

  38. Jaumot J, Gargallo R, de Juan A, Tauler R (2005) Chemometr Intell Lab 76:101–110

    Article  CAS  Google Scholar 

  39. Esteban M, Ariño C, Diaz Cruz JM, Diaz Cruz MS, Tauler R (2000) Trends Anal Chem 19:49–61

    Article  CAS  Google Scholar 

  40. Lämmerhofer M, Lindner W (2000) In: Valkó K (ed) Separation methods in drug synthesis and purification. Handbook of analytical separations, vol 1. Elsevier, Amsterdam

  41. Matthijs N, Perrin C, Maftouh M, Massart DL, Vander Heyden Y (2004) J Chromatogr A 1041:119–133

    Article  CAS  Google Scholar 

  42. Blackwell JA, Stringham RW (1997) Anal Chem 69:409–415

    Article  CAS  Google Scholar 

  43. Ye YK, Stringham RW (2001) J Chromatogr A 927:53–60

    Article  CAS  Google Scholar 

  44. Di Marco V, Bombi GG (2001) J Chromatogr A 931:1–30

    Article  CAS  Google Scholar 

  45. Vivó-Truyols G, Torres-Lapasió JR, Caballero RD, García-Alvarez-Coque MC (2002) J Chromatogr A 958:35–49

    Article  Google Scholar 

  46. Vivó-Truyols G, Torres-Lapasió JR, van Nederkassel AM, Vander Heyden Y, Massart DL (2005) J Chromatogr A 1096:146–155

    Article  Google Scholar 

  47. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjöström M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005) Analyst 130:701–707

    Article  CAS  Google Scholar 

  48. Jonsson P, Johansson ES, Woulikainen A, Lindberg J, Schuppe-Kiostinen I, Kusano M, Sjöström M, Trugg J, Moritz T, Antti H (2006) J Proteome Res 5:1407–1414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Lynen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Lynen, F., Hitzel, L. et al. A New Strategy for Fast Chiral Screening by Combining HPLC-DAD with a Multivariate Curve Resolution–Alternating Least Squares Algorithm. Chromatographia 76, 1055–1066 (2013). https://doi.org/10.1007/s10337-013-2520-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2520-9

Keywords

Navigation