Skip to main content
Log in

Quantification of Retinoid Compounds by Supercritical Fluid Chromatography Coupled to Ultraviolet Diode Array Detection

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Liposoluble vitamins are widely analyzed due to their significant antioxidant activity. Quantification by liquid or gas chromatography is often time consuming and requires sample treatments prior to the analysis. Supercritical fluid chromatography (SFC), especially with the developments of new commercial systems, is nowadays considered as a credible alternative to standard chromatography. It provides a reduced acquisition time as well as sensitivity similar to that of liquid chromatography. To illustrate the new capabilities of SFC, six organic compounds related to the vitamin A family, all-trans-retinal, all-trans-retinol, all-trans-retinoic acid, retinyl propionate, retinyl acetate, and all-trans-retinyl palmitate, were analyzed and quantified. The choice of the column chemistry, co-solvent, the linearity and reproducibility of the method, and the matrix effect are discussed in detail. Best separation was finally obtained using a diphenyl column, with an excellent linearity over three orders of magnitude and limits of quantification in the low picomole range. Finally, the method was used for the quantification of retinyl palmitate in a pharmaceutical product with minimal sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klesper E, Corwin AH, Turner DA (1962) High pressure gas chromatography above critical temperatures. J Org Chem 27:700–701

    Article  CAS  Google Scholar 

  2. Chester TL (1986) The role of supercritical fluid chromatography in analytical chemistry. J Chromatogr Sci 24:226–229

    Article  CAS  Google Scholar 

  3. Sie ST, Rijnders GWA (1967) High-pressure gas chromatography and chromatography with supercritical fluids. II. Permeability and efficiency of packed columns with high-pressure gases as mobile phases under conditions of incipient turbulence. Sep Sci 2:699

    Article  CAS  Google Scholar 

  4. Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47(3):566–573

    Article  CAS  Google Scholar 

  5. Berger TA (1995) Packed column SFC. Royal Society of Chemistry, Letchworth

    Google Scholar 

  6. Gere DR, Houck RK, Pacholec F, Rosselli ACP (1988) Supercritical fluid chromatography: a technology update. Fresenius J Anal Chem 330:222–224

    Article  CAS  Google Scholar 

  7. Gurdale K, Lesellier E, Tchapla A (1999) Methylene selectivity and eluotropic strength variations in subcritical fluid chromatography with packed columns and CO2-modifier mobile phases. Anal Chem 71(11):2164–21701

    Article  CAS  Google Scholar 

  8. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA (2005) Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin E, sterols, and squalene) from palm oil. Lipids 40(4):429–432

    Article  CAS  Google Scholar 

  9. Turner C, King JW, Mathiasson L (2001) Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J Chromatogr A 936(1–2):215–237

    CAS  Google Scholar 

  10. Lesellier E, Tchapla A, Marty C, Lebert A (1993) Analysis of carotenoids by high-performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A 633(1–2):9–23

    CAS  Google Scholar 

  11. Lesellier E (2001) Analysis of non-saponifiable lipids by super-/subcritical-fluid chromatography. J Chromatogr A 936(1–2):201–214

    CAS  Google Scholar 

  12. Matsubara A, Bamba T, Ishida H, Fukusaki E, Hirata K (2009) Highly sensitive and accurate profiling of carotenoids by supercritical fluid chromatography coupled with mass spectrometry. J Sep Sci 32(9):1459–1464

    Article  CAS  Google Scholar 

  13. Masuda M, Koike S, Handa M, Sagara K, Mizutani T (1993) Application of supercritical fluid extraction and chromatography to assay fat-soluble vitamins in hydrophobic ointment. Anal Sci 9(1):29–32

    Article  CAS  Google Scholar 

  14. Pyo D (2000) Separation of vitamins by supercritical fluid chromatography with water-modified carbon dioxide as the mobile phase. J Biochem Biophys Methods 43(1–3):113–123

    Article  CAS  Google Scholar 

  15. Braumann U, Händel H, Strohschein S, Spraul M, Krack G, Ecker R, Albert K (1997) Separation and identification of vitamin A acetate isomers by supercritical fluid chromatography–1H NMR coupling. J Chromatogr A 761(1–2):336–340

    CAS  Google Scholar 

  16. D’Ambrosio DN, Clugston RD, Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3(1):63–103

    Article  Google Scholar 

  17. Kane MA, Folias AE, Napoli JL (2008) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem 378(1):71–79

    Article  CAS  Google Scholar 

  18. de Pee S, Bloem MW (2007) The bioavailability of (pro) vitamin A carotenoids and maximizing the contribution of homestead food production to combating vitamin A deficiency. Int J Vitam Nutr Res 77(3):182–192

    Article  Google Scholar 

  19. Citova I (2007) Comparison of a novel ultra performance liquid chromatography method for determination of retinol and a-tocopherol in human serum with conventional HPLC using monolithic and particulate columns. Anal Bioanal Chem 388:675–681

    Article  CAS  Google Scholar 

  20. Furr HC (2004) Analysis of retinoids and carotenoids: problems resolved and unresolved. J Nutr 134:281–285

    Google Scholar 

  21. Gratzfeld-Huesgen A (1997) HPLC analysis of vitamins in tablets using HPLC. Agilent technologies, Germany

    Google Scholar 

  22. Thibeault D, Su H, MacNamara E, Schipper HM (2009) Isocratic rapid liquid chromatographic method for simultaneous determination of carotenoids, retinol, and tocopherols in human serum. J Chromatogr B 877(11–12):1077–1083

    Article  CAS  Google Scholar 

  23. Miller KW, Yang CS (1985) An isocratic high-performance liquid chromatography method for the simultaneous analysis of plasma retinol, α-tocopherol, and various carotenoids. Anal Biochem 145(1):21–26

    Article  CAS  Google Scholar 

  24. Salo-Väänänen P, Ollilainen V, Mattila P, Lehikoinen K, Salmela-Mölsä E, Piironen V (2000) Food Chem 71:535

    Article  Google Scholar 

  25. Chauveau-Duriot B (2010) Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method. Anal Bioanal Chem 397:777–790

    Article  CAS  Google Scholar 

  26. van Breemen RB, Nikolic D, Xu X, Xiong Y, van Lieshout M, West CE, Schilling AB (1998) Development of a method for quantitation of retinol and retinyl palmitate in human serum using high-performance liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry. J Chromatogr A 794(1–2):245–251

    Google Scholar 

  27. Brunner G, Malchow T, Stuerken K, Gottschau T (1991) J Supercrit Fluids 4:72

    Article  CAS  Google Scholar 

  28. Deye JF, Berger TA, Anderson AG (1990) Nile red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids. Anal Chem 62(6):615–622

    Article  CAS  Google Scholar 

  29. Lou X, Janssen H-G, Cramers CA (1997) Temperature and pressure effects on solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography. J Chromatogr A 785(1–2):57–64

    CAS  Google Scholar 

  30. Bartle KD (1988) Theory and principles of supercritical fluid chromatography. The Royal Society of Chemistry (UK), Loughborough

    Google Scholar 

  31. West C, Lesellier E (2006) Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV: aromatic stationary phases. J Chromatogr A 1115(1–2):233–245

    CAS  Google Scholar 

  32. West C, Lesellier E (2008) A unified classification of stationary phases for packed column supercritical fluid chromatography. J Chromatogr A 1191(1–2):21–39

    CAS  Google Scholar 

  33. Matsubara A, Fukusaki E, Bamba T (2010) Metabolite analysis by supercritical fluid chromatography. Bioanalysis 2(1):27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.M. is indebted to the Region Île-de-France for a Ph.D. research fellowship. Agilent Technologies is warmly thanked for the loan of the SFC–UV system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Touboul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méjean, M., Vollmer, M., Brunelle, A. et al. Quantification of Retinoid Compounds by Supercritical Fluid Chromatography Coupled to Ultraviolet Diode Array Detection. Chromatographia 76, 1097–1105 (2013). https://doi.org/10.1007/s10337-013-2508-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2508-5

Keywords

Navigation