Skip to main content
Log in

Using Size-Exclusion Chromatography to Evaluate Changes in the Sizes of Au and Au/Pd Core/Shell Nanoparticles Under Thermal Treatment

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this study, we used size-exclusion chromatography (SEC) to evaluate the sizes of Au and Au/Pd core/shell nanoparticles (NPs) that had been subjected to thermal treatment, with the eluted NPs monitored through diode array detection (DAD) of the surface plasmon (SP) absorption of the NPs. In the absence of an adequate stabilizer, thermal treatment resulted in longer retention times for the Au NPs and shorter retention times for the Au/Pd core/shell NPs in the SEC chromatograms. Thus, thermal treatment influenced the sizes of these Au and Au/Pd core/shell NPs, through digestive ripening and Ostwald-type growth, respectively. In addition, the trends in the SP absorption phenomena of the NPs in the eluted samples, as measured using DAD, were consistent with the trends of their size variations, as measured from their elution profiles. In the presence of 3A-amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin (H2N-β-CD) as a stabilizer, the retention times and SP absorptions of the eluted Au and Au/Pd NP samples remained constant. Thus, H2N-β-CD is a good stabilizer against size variation duration the thermal treatment of Au and Au/Pd core/shell NPs. A good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy. Therefore, this SEC strategy is an effective means of further searching for suitable stabilizers for NPs, especially those exposed to harsh reaction conditions (e.g., in catalytic reactions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607–609

    Article  CAS  Google Scholar 

  2. Haruta M (2003) Chem Rec 3:75–87

    Article  CAS  Google Scholar 

  3. Abad A, Concepcion P, Corma A, Garcia H (2005) Angew Chem Int Ed 44:4066–4069

    Article  CAS  Google Scholar 

  4. Thielecke N, Ayternir M, Prusse U (2007) Catal Today 121:115–120

    Article  CAS  Google Scholar 

  5. Han J, Liu Y, Guo R (2009) J Am Chem Soc 131:2060–2061

    Article  CAS  Google Scholar 

  6. Hoshi N, Kida K, Nakamura M, Nakada M, Osada K (2006) J Phys Chem B 110:12480–12484

    Article  CAS  Google Scholar 

  7. Zhou WJ, Lee JY (2007) Electrochem Commun 9:1725–1729

    Article  CAS  Google Scholar 

  8. Jose D, Jagirdar BR (2008) J Phys Chem C 112:10089–10094

    Article  CAS  Google Scholar 

  9. Toshima N, Yonezawa T (1998) New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  10. Hu JW, Li JF, Ren B, Wu DY, Sun SG, Tian ZQ (2007) J Phys Chem C 111:1105–1112

    Article  CAS  Google Scholar 

  11. Scott RWJ, Wilson OM, Oh SK, Kenik EA, Crooks RM (2004) J Am Chem Soc 126:15583–15591

    Article  CAS  Google Scholar 

  12. Schmid G, Lehnert A, Malm JO, Bovin JO (1991) Angew Chem Int Ed Engl 30:874–876

    Article  Google Scholar 

  13. Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  14. Lu LH, Wang HS, Xi SQ, Zhang HJ (2002) J Mater Chem 12:156–158

    Article  CAS  Google Scholar 

  15. Liu FK (2009) Chromatographia 70:7–13

    Article  CAS  Google Scholar 

  16. Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Angew Chem Int Ed 46:7251–7254

    Article  CAS  Google Scholar 

  17. Dieckmann Y, Colfen H, Hofmann H, Petri-Fink A (2009) Anal Chem 81:3889–3895

    Article  CAS  Google Scholar 

  18. Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Anal Bioanal Chem 393:81–95

    Article  CAS  Google Scholar 

  19. Sykora D, Kasicka V, Miksik I, Rezanka P, Zaruba K, Matejka P, Kral V (2010) J Sep Sci 33:372–387

    Article  CAS  Google Scholar 

  20. Gaikwad AV, Verschuren P, Eiser E, Rothenberg G (2006) J Phys Chem B 110:17437–17443

    Article  CAS  Google Scholar 

  21. Liu FK (2010) Anal Sci 26:1145–1150

    Article  CAS  Google Scholar 

  22. Liu FK (2007) Chromatographia 66:791–796

    Article  CAS  Google Scholar 

  23. Liu FK (2008) Chromatographia 68:81–87

    Article  CAS  Google Scholar 

  24. Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Appl Catal B Environ 69:115–125

    Article  CAS  Google Scholar 

  25. Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  26. Wilcoxon JP, Martin JE, Provencio P (2000) Langmuir 16:9912–9920

    Article  CAS  Google Scholar 

  27. Uppal MA, Kafizas A, Limb TH, Parkin IP (2010) New J Chem 34:1401–1407

    Article  CAS  Google Scholar 

  28. Harris DC (2007) Quantitative chemical analysis, 7th edn. WH Freeman, New York

  29. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  30. Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Lee CS, Shim JJ (2007) Korean J Chem Eng 24:1089–1094

    Article  CAS  Google Scholar 

  31. Skoog DA, West DM, Holler FJ, Crouch SR (2004) Fundamentals of analytical chemistry, 8th edn. Brooks Cole, CA

  32. Lu CL, Prasad KS, Wu HL, Ho JA, Huang MH (2010) J Am Chem Soc 132:14546–14553

    Article  CAS  Google Scholar 

  33. Liu J, Xu R, Kaifer AE (1998) Langmuir 14:7337–7339

    Article  CAS  Google Scholar 

  34. Liu J, Mendoza S, Roman E, Lynn MJ, Xu R, Kaifer AE (1999) J Am Chem Soc 121:4304–4305

    Article  CAS  Google Scholar 

  35. Alvarez J, Liu J, Roman E, Kaifer AE (2000) Chem Commun 1151–1152

  36. Zhu T, Fu XY, Mu T, Wang J, Liu ZF (1999) Langmuir 15:5197–5199

    Article  CAS  Google Scholar 

  37. Jang SG, Choi DG, Kim S, Jeong JH, Lee ES, Yang SM (2006) Langmuir 22:3326–3331

    Article  CAS  Google Scholar 

  38. Senra JD, Malta LFB, da Costa MEHM, Michel RC, Aguiar LCS, Simas ABC, Antunes OAC (2009) Adv Synth Catal 351:2411–2422

    Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National Science Council, Taiwan (NSC 97-2113-M-390-004-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ken Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, FK., Chang, YC. Using Size-Exclusion Chromatography to Evaluate Changes in the Sizes of Au and Au/Pd Core/Shell Nanoparticles Under Thermal Treatment. Chromatographia 74, 767–775 (2011). https://doi.org/10.1007/s10337-011-2139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2139-7

Keywords

Navigation