Skip to main content
Log in

Monolithic Silica for Fast HPLC: Current Success and Promising Future

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

As an approach for fast HPLC, monolithic silica has proven to be highly effective. It is especially successful for routinely obtaining fast isocratic HPLC analyses of small drug molecules. The low cost of monolithic compared with other approaches, such as UPLC, makes it more convenient for everyday application. It is also the more developed and widely applied technique compared with superficially porous particles. It offers the possibility for gaining high plate numbers through column coupling, but not at the expense of run time if a proper flow program is subsequently applied. Good precision and batch reproducibility are now achieved with commercially available monolithic silica columns. The application of monolithic silica columns is already well developed in various fields. It invades the field of bio-analysis and proteomics. Hundreds of analytical methods have already been successfully transferred to or developed on monolithic silica columns. An updated strategy based on Snyder’s method for rapid method development using monolithic column has been provided. However, more is still to be expected from monolithic silica in term of chemistry variation, application, and instrument compatibility. The future of monolithic silica is promising when considering the high demand for fast chromatographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jerkovitch AD, Mellors JS, Jorgenson JW (2003) LCGC 21(7):600–610

    Google Scholar 

  2. Wu N, Lippert JA, Lee ML (2001) J Chromotogr 911(1):1–12

    CAS  Google Scholar 

  3. Villiers A, Lestremau F, Szucs R, Gélébart S, David F and Sandra P (2006) J Chromatogr A 1127(1–2):60–68

    Google Scholar 

  4. Cunliffe JM, Adams-Hall SB, Maloney TD (2007) J Sep Sci 30(8):1214–1223

    CAS  Google Scholar 

  5. Nguyen D, Guillarme D, Rudaz S, Veuthey JL (2006) J Sep Sci 29:1836–1848

    CAS  Google Scholar 

  6. Wu N, Clausen AM (2007) J Sep Sci 30:167–1182

    Google Scholar 

  7. Nguyen D, Guillarme D, Heinisch S, Barrioulet MP, Rocca JL, Rudaz S, Veuthey JL (2007) J Chromatogr A 1167:76–84

    CAS  Google Scholar 

  8. MacNair JE, Lewis KC, Jorgenson JW (1997) Anal Chem 69:983–989

    CAS  Google Scholar 

  9. Mazzeo JR, Neue UD, Kele M, Plumb RS (2005) Anal Chem 77:460A–466A

    CAS  Google Scholar 

  10. DeStefano JJ, Langlois TJ, Kirkland JJ (2008) J Chromatogr Sci 46:254–260

    CAS  Google Scholar 

  11. Halo Fused-core particle Technology for hyper-fast and super-rugged HPLC columns, Advanced Materials Technology, Inc. (pdf file). http://www.infochroma.ch/pdf_hplc/halo_broschuere.pdf

  12. Zhang Y, Wang X, Mukherjee P, Petersson P (2009) J Chromatogr A 1216:4597–4605

    CAS  Google Scholar 

  13. Gritti F, Cavazzini A, Marchetti N, Guiochon G (2007) J Chromatogr A 1157:289–303

    CAS  Google Scholar 

  14. Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184(1–2):393–415

    CAS  Google Scholar 

  15. Oláh E, Fekete S, Fekete J, Ganzler K (2010) J Chromatogr A 1217(23):3642–3653

    Google Scholar 

  16. Brice RW, Zhang X, Colón LA (2009) J Sep Sci 32(15–16):2723–2731

    CAS  Google Scholar 

  17. Antia FD, Horvath C (1988) J Chromatogr 435:1–15

    CAS  Google Scholar 

  18. Guillarme D, Heinisch S, Rocca JL (2004) J Chromatogr A 1052:39–51

    CAS  Google Scholar 

  19. Lundanes E, Greibrokk T (2006) Adv Chromatogr 44:45–77

    CAS  Google Scholar 

  20. Thompson JD, Carr PW (2002) Anal Chem 74:1017–1023

    CAS  Google Scholar 

  21. Heyrman AN, Henry RA (2002) Keystone Scientific, Technical Bulletin, TB 99–106

  22. Chmielowiec J, Sawatzky H (1979) J Chromatogr Sci 17:245–252

    CAS  Google Scholar 

  23. Fuan W, Jianchi S, Yingchen G, Yihong W, Yan Z (1995) Microchem J 52:200–204

    Google Scholar 

  24. Houdiere F, Fowler P, Djordjevic N (1997) Anal Chem 69:2589–2593

    CAS  Google Scholar 

  25. Clark J (2004) Today’s Chem Work 13(8):43–45

    Google Scholar 

  26. Zhua C, Goodalla DM, Wrenb SAC (2004) LCGC 17(10):530–540

    Google Scholar 

  27. Nakanishi K, Soga N (1991) J Am Ceram Soc 74:2518–2530

    CAS  Google Scholar 

  28. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1997) J Sol-Gel Sci Technol 8:547–552

    CAS  Google Scholar 

  29. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1998) J Sol-Gel Sci Technol 13:163–169

    CAS  Google Scholar 

  30. Miyazaki S, Takahashi M, Ohira M, Terashima H, Morisato K, Nakanishi K, Ikegami T, Miyabe K, Tanaka N (2011) J Chromatogr A 1218(15):1988–1994

    CAS  Google Scholar 

  31. Tanaka N, Kobayashi H, Ishizuka H, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) J Chromatogr A 965:35–49

    CAS  Google Scholar 

  32. Guiochon G (2007) J Chromatogr A 1168:101–168

    CAS  Google Scholar 

  33. Siouffi A-M (2003) J Chromatogr A 1000:801–818

    CAS  Google Scholar 

  34. Kobayashi H, Ikegami T, Kimura H, Hara T, Tokuda D, Tanaka N (2006) Anal Sci 22(4):491–501

    CAS  Google Scholar 

  35. Svec F, Huber C (2006) Anal Chem 78(7):2100–2107

    CAS  Google Scholar 

  36. Svec F (2010) LCGC 28(4):18–23

    Google Scholar 

  37. Svec F (2010) J Chromatogr A 1217:902–924

    CAS  Google Scholar 

  38. Bidlingmaier B, Unger KK, von Doehren N (1999) J Chromatogr A 832:11–16

    CAS  Google Scholar 

  39. Spoof L, Meriluoto J (2002) J Chromatogr A 947:237–245

    CAS  Google Scholar 

  40. Lubda D, Cabrera K, Kraas W, Schaefer C, Cunningham D (2001) LCGC 19:1186–1191

    CAS  Google Scholar 

  41. Leinweber FC, Lubda D, Cabrera K, Tallarek U (2002) Anal Chem 74(11):2470–2477

    CAS  Google Scholar 

  42. Cabrera K, Wieland G, Lubda D, Nakanishi K, Soga N, Minakuchi H, Unger KK (1998) Trac-Trend Anal Chem 17:50–53

    CAS  Google Scholar 

  43. Gerber F, Krummen M, Potgeter H, Roth A, Siffrin C, Spoendlin C (2004) J Chromatogr A 1036:127–133

    CAS  Google Scholar 

  44. Gritti F, Piatkowski W, Guiochon G (2003) J Chromatogr A 983:51–71

    CAS  Google Scholar 

  45. Miyabe K, Cavazzini A, Gritti F, Kele M, Guiochon G (2003) Anal Chem 75:6975–6989

    CAS  Google Scholar 

  46. Gritti F, Guiochon G (2009) J Chromatogr A 1216(23):4752–4767

    CAS  Google Scholar 

  47. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1997) J Chromatogr A 762:135–146

    CAS  Google Scholar 

  48. Tzanavaras PD, Themelis DG, Zotou A, Stratis J, Karlberg B (2008) J Pharm Biomed Anal 46(4):670–675

    CAS  Google Scholar 

  49. Gray MJ, Slonecker PJ, Dennis G, Shalliker RA (2005) J Chromatogr A 1096(1–2):92–100

    CAS  Google Scholar 

  50. van Nederkassel AM, Aerts A, Dierick A, Massart DL, Vander Heyden Y (2003) J Pharm Biomed Anal 32:233–249

    Google Scholar 

  51. Samanidou VE, Ioannou AS, Papadovannis IN (2004) J Chromatogr B 809(1):175–182

    CAS  Google Scholar 

  52. Spoof L, Meriluoto J (2002) J Chromatogr A 947:237–245

    CAS  Google Scholar 

  53. Schmidt AH (2005) J Chromatogr A 1073:377–381

    CAS  Google Scholar 

  54. Cabrera K, Lubda D, Eggenweiler HH-M, Minakuchi H, Nakanishi K (2000) J High Resolut Chromatogr 23:93–99

    CAS  Google Scholar 

  55. Kele M, Guiochon G (2002) J Chromatogr A 960:19–49

    CAS  Google Scholar 

  56. Wu N, Dempsey J, Yehl PM, Dovletoglou A, Ellison D, Wyvratt J (2004) Anal Chim Acta 523:149–156

    CAS  Google Scholar 

  57. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1998) J Chromatogr A 797(1–2):133–137

    Google Scholar 

  58. Leinweber FC, Lubda D, Cabrera K, Tallarek U (2002) Anal Chem 74(11):2470–2477

    CAS  Google Scholar 

  59. Leinweber FC, Tallarek U (2003) J Chromatogr A 1006:207–228

    CAS  Google Scholar 

  60. Miyabe K, Guiochon G (2004) J Sep Sci 27(10–11):853–873

    CAS  Google Scholar 

  61. Eeltink S, Decrop WMC, Rozing GP, Schoenmakers PJ, Kok WT (2004) J Sep Sci 27(17–18):1431–1440

    CAS  Google Scholar 

  62. Eeltink S, Gzil P, Kok WT, Schoenmakers PJ, Desmet G (2006) J Chromatogr A 1130(1):108–114

    CAS  Google Scholar 

  63. Eeltink S, Desmet G, Vivo-Truyols G, Rozing GP, Schoenmakers PJ, Kok WT (2006) J Chromatogr A 1104(1–2):256–262

    CAS  Google Scholar 

  64. El Deeb S, Preu L, Wätzig H (2007) J Pharm Biom Anal 44:85–95

    CAS  Google Scholar 

  65. Cabrera K (2008) LCGC 26(S4):32–35

    Google Scholar 

  66. Lukulay PHL, McGuffin V (1996) J Microcolumn Sep 8:211–224

    CAS  Google Scholar 

  67. Snyder LR (1970) J Chromatogr Sci 8:692–706

    CAS  Google Scholar 

  68. Jinno K, Yamagami M (1988) Chromatographia 27:417–424

    Google Scholar 

  69. Scott RP, Lawrence JG (1969) J Chromatogr Sci 7:65–71

    CAS  Google Scholar 

  70. Moore LM, Synovec RE (1993) Anal Chem 65:2663–2670

    CAS  Google Scholar 

  71. Nesterenko PN, Rybalko MJ (2005) Anal Chem 60:398–403

    Google Scholar 

  72. Tian H, Xu J, Guan Y (2007) Talanta 72:813–818

    CAS  Google Scholar 

  73. El Deeb S, Schepers U, Wätzig U (2006) J Sep Sci 29:1571–1577

    CAS  Google Scholar 

  74. Majors RE (2007) LCGC North Am 25(9):920–942

    CAS  Google Scholar 

  75. Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, Tanaka N (2008) Anal Chem 80:8741–8750

    CAS  Google Scholar 

  76. Majors RE (2008) LCGC North Am 26(1):16

    CAS  Google Scholar 

  77. Engelhardt H, Goetzinger A (2004) Chromatographia 60(1):207–211

    Google Scholar 

  78. Kaminiski L, El Deeb S, Wätzig H (2008) J Sep Sci 31(10):1745–1749

    Google Scholar 

  79. Snyder LS, Kirkland JJ, Glajch JL (1997) Practical HPLC method development, 2nd edn. Wiley, Hoboken

    Google Scholar 

  80. El Deeb S, Preu L, Wätzig H (2007) J Sep Sci 30:1993–2001

    CAS  Google Scholar 

  81. El Deeb S, Schepers U, Wätzig H (2006) Die Pharmazie 61:751–756

    CAS  Google Scholar 

  82. McCalley DV (2002) J Chromatogr A 965:51–64

    CAS  Google Scholar 

  83. Yang C, Ikegami T, Hara T, Tanaka N (2006) J Chromatogr A 1130(2):175–181

    CAS  Google Scholar 

  84. El Deeb S, Wätzig H (2006) Turk J Chem 30:543–552

    CAS  Google Scholar 

  85. Wu JT, Zeng H, Deng Y, Unger SE (2001) Rapid Commun Mass Spectrom 15(13):1113–1119

    CAS  Google Scholar 

  86. Volmer DA, Sleno L (2004) Spectroscopy 19(6):16–28

    CAS  Google Scholar 

  87. Zeng H, Deng Y, Wu J (2003) J Chromatogr A 788(2):331–337

    CAS  Google Scholar 

  88. Jonathan M, Mirek PB (2007) Analyst 132(3):208–217

    Google Scholar 

  89. Mo W, Karger BL (2002) Curr Opin Chem Biol 6(5):666–675

    CAS  Google Scholar 

  90. Kele M, Neue U, Wyndham K, Iraneta P, Mazzeo J, Walter T (2004) Waters Corporation, Milford, MA, USA. http://www.waters.com/watersdivision/pdfs/WA40161.pdf

  91. Zacharis CK, Kika FS, Tzanavaras PD, Rigas P, Kyranas ER (2011) Talanta 84(2):480–486

    CAS  Google Scholar 

  92. Liu Y, Antonucci V, Shen Y, Vailaya A, Wu NJ (2005) J Liq Chromatogr Related Technol 28(3):341–356

    CAS  Google Scholar 

  93. Pihlainen K, Sippola E, Kostiainen R (2003) J Chromatogr A 994:93–108

    CAS  Google Scholar 

  94. Plumb R, Dear G, Mallett D, Ayrton J (2001) Rapid Commun Mass Spectrom 15:986–993

    CAS  Google Scholar 

  95. Can N, Arli G (2010) J AOAC Int 93(4):1077–1085

    CAS  Google Scholar 

  96. Aboul-Enein HY, Ali I (2005) Talanta 65(1):276–280

    CAS  Google Scholar 

  97. Aboul-Enein HY, Hefnawy M (2003) J Liq Chromatogr Related Technol 26(17):2897–2908

    CAS  Google Scholar 

  98. Hashem H, Jira Th (2005) Chromatographia 61(3–4):133–136

    CAS  Google Scholar 

  99. Dugo P, Herrero M, Kumm T, Giuffrida D, Dugo G, Mondello L (2008) J Chromatogr A 1189(1–2):196–206

    CAS  Google Scholar 

  100. Wang J, Xu Y, Liu S, Jiang S, Pan C (2007) J Sep Sci 30(1):3–7

    CAS  Google Scholar 

  101. Rostagno MA, Palma M, Barroso CG (2007) Anal Chim Acta 582(2):243–249

    CAS  Google Scholar 

  102. Jakab A, Forgacs E (2002) Chromatographia 56:S69–S73

    CAS  Google Scholar 

  103. Volmer DA, Brombacher S, Whitehead B (2002) Rapid Commun Mass Spectrom 16:2298–2305

    CAS  Google Scholar 

  104. Regueiro J, Alvarez G, Mauriz A, Blanco (2011) J Food Chem 127(4):1884–1891

  105. Zarghi A, Foroutan SM, Shafaati A, Khoddam A (2007) Chromatographia 66(9–10):747–750

    CAS  Google Scholar 

  106. Xu RN, Fan L, Rieser MJ, El-Shourbagy TA (2007) J Pharm Biomed Anal 44(2):342–355

    CAS  Google Scholar 

  107. Wu R, Hu L, Wang F, Ye M, Zou H (2008) J Chromatogr A 1184(1–2):369–392

    CAS  Google Scholar 

  108. Hsieh Y, Wang G, Wang Y, Chackalamannil S, Korfmacher WA (2003) Anal Chem 75(8):1812–1818

    CAS  Google Scholar 

  109. Nonaka S, Tsunoda M, Aoyama C, Funatsu T (2006) J Chromatogr B 843(2):170–174

    CAS  Google Scholar 

  110. Lutz ES, Markling ME, Masimirembwa CM (2002) J Chromatogr B Analyt Technol Biomed Life Sci 780(2):205–215

    CAS  Google Scholar 

  111. Li AC, Chen Y-L, Junga H, Shou WZ, Jiang X, Naidong W (2003) Chromatographia 58(11–12):723–731

    CAS  Google Scholar 

  112. Caufield W, Stewart J (2002) J Liq Chromatogr Related Technol 25(19):2977–2998

    CAS  Google Scholar 

  113. Huang MQ, Mao Y, Jemal M, Arnold M (2006) Rapid Commun Mass Spectrom 20(11):1709–1714

    CAS  Google Scholar 

  114. Hefnawy MM, Aboul-Enein HY (2004) Anal Chim Acta 504(2):291–297

    CAS  Google Scholar 

  115. Bugey A, Rudaz S, Staub C (2006) J Chromatogr B 832(2):249–255

    CAS  Google Scholar 

  116. Aboul-Enein HY, Hefnawy MM (2005) Talanta 65(1):67–73

    CAS  Google Scholar 

  117. Kadi A, Hefnawy M, Al-Majed A, Alonezi S, Asiri Y, Attia S, Abourashed E, El-Subbagh H (2011) Analyst 136(3):591–597

    CAS  Google Scholar 

  118. Saunders KC, Ghanem A, Hon WB, Hilder EF, Haddad PR (2009) Anal Chim Acta Volume 652(1–2):22–31

    CAS  Google Scholar 

  119. Waite S, McGinley M (2006) Direct plasma analysis of drug compounds using onyx monolithic columns. Phenomenex, Torrance. https://phenomenex.blob.core.windows.net/documents/62e3a6ae-b3c6-4046-8f57-6cc8dee803b9.pdf

    Google Scholar 

  120. Wang Y, Kong L, Hu L, Lei X, Yang L, Chou G, Zou H, Wang C, Bligh SWA, Wang Z (2007) J Chromatogr B 860(2):185–194

    CAS  Google Scholar 

  121. Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Shintani Y, Furuno M, Cabrera K (2004) Anal Chem 76:1273–1281

    CAS  Google Scholar 

  122. Hu LH, Chen XG, Kong L, Su XY, Ye ML, Zou HF (2005) J Chromatogr A 1092:191–198

    CAS  Google Scholar 

  123. Dugo P, Kumm T, Crupi ML, Cotroneo A, Mondello L (2006) J Chromatogr A 1112:269–275

    Google Scholar 

  124. Dugo P, Kumm T, Chiofalo B, Cotroneo A, Mondello L (2006) J Sep Sci 29:1146–1154

    CAS  Google Scholar 

  125. Venkatramani CJ, Zelechonok Y (2004) Anal Chem 76:3484–3494

    Google Scholar 

  126. Kimura H, Tanigawa H, Morisaka H, Ikegami H, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Ueda M, Cabrera K, Tanaka N (2004) J Sep Sci 27:897–904

    CAS  Google Scholar 

  127. Dugo P, Favoino O, Luppino R, Dugo G, Mondello L (2004) Anal Chem 76:2525–2530

    CAS  Google Scholar 

  128. Hata K, Morisaka H, Hara K, Mima J, Yumoto N, Tatsu Y, Furuno M, Ishizuka N, Ueda M (2006) Anal Biochem 350:292–297

    CAS  Google Scholar 

  129. Zhang J, Zhang L, Duan J, Liang Z, Zhang W, Huo Y, Zhang Y (2006) J Sep Sci 29:2514–2522

    CAS  Google Scholar 

  130. Cacciola F, Jandera P, Hajdú Z, Česla P, Mondello L (2007) J Chromatogr A 1149:73–87

    CAS  Google Scholar 

  131. Machtejevas E, Andrecht S, Lubda D, Unger KK (2007) J Chromatogr A 1144(1):97–101

    CAS  Google Scholar 

  132. Zhang J, Wu S, Kim J, Karger B (2007) J Chromatogr A 1154(1–2):295–307

    CAS  Google Scholar 

  133. Guryča V, Kieffer-Jaquinod S, Garin J, Masselon CD (2008) Anal Bioanal Chem 392(7–8):1291–1297

    Google Scholar 

  134. Urban J, Jandera P, Kučerová Z, van Straten MA, Claessens HA (2007) J Chromatogr A 1167(1):63–75

    CAS  Google Scholar 

  135. Skudas R, Grimes BA, Machtejevas E, Kudirkaite V, Kornysova O, Hennessy TP, Lubda D, Unger KK (2007) J Chromatogr A 1144(1):72–84

    CAS  Google Scholar 

  136. Xiong L, Zhang R, Regnier FE (2004) J Chromatogr A 1030:187–194

    CAS  Google Scholar 

  137. Barroso B, Lubda D, Bischoff R (2003) J Proteome Res 2(6):633–642

    CAS  Google Scholar 

  138. Premstaller A, Oberacher H, Walcher W, Timperio AM, Zolla L, Chervet JP, Cavusoglu N, van Dorsselaer A, Huber CG (2001) Anal Chem 73:2390–2396

    CAS  Google Scholar 

  139. Huang XA, Zhang S, Schultz GA, Henion J (2002) Anal Chem 74:2336–2344

    CAS  Google Scholar 

  140. Luo QZ, Shen YF, Hixson KK, Zhao R, Yang F, Moore RJ, Mottaz HM, Smith RD (2005) Anal Chem 77:5028–5035

    CAS  Google Scholar 

  141. Leinweber FC, Schmid DG, Lubda D, Wiesmuller KH, Jung G, Tallarek U (2003) Rapid Commun Mass Spectrom 17:1180–1188

    CAS  Google Scholar 

  142. Geiser L, Eeltink S, Svec F, Fréchet JMJ (2007) J Chromatogr A 1140:140–146

    CAS  Google Scholar 

  143. Josic D, Buchacher A, Jungbauer A (2001) J Chromatogr B 752:191–205

    CAS  Google Scholar 

  144. Gu B, Armenta JM, Lee ML (2005) J Chromatogr A 1079:382–391

    CAS  Google Scholar 

  145. Premstaller A, Oberacher H, Huber CG (2000) Anal Chem 72:4386–4393

    CAS  Google Scholar 

  146. Oberacher H, Premstaller A, Huber CG (2004) J Chromatogr A 1030:201–208

    CAS  Google Scholar 

  147. Petro M, Svec F, Gitsov I, Fréchet JMJ (1996) Anal Chem 68:315–321

    CAS  Google Scholar 

  148. Janco M, Sykora D, Svec F, J.M.J. Fréchet JMJ, Schweer J, Holm R (2000) J Polym Sci Polym Chem 38:2767–2778

  149. Altmaier S, Cabrera K (2008) J Sep Sci 31:2551–2559

    CAS  Google Scholar 

  150. US Pharmacopoeia (2006) Volume 29 Supplement 1, April 2006

Download references

Acknowledgments

The author of this manuscript is grateful to Dr. Lutz Preu, Daphny Kaminski and Lukas Kaminski for critically reading the manuscript. Especially Lukas Kaminski contributed with very valuable ideas about the comparison of monolithic columns to alternatives. Dr. El Deeb is a research fellow of the Alexander von Humboldt Foundation at the Institute of Pharmacy of the Freie Universität Berlin and thanks them for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami El Deeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Deeb, S. Monolithic Silica for Fast HPLC: Current Success and Promising Future. Chromatographia 74, 681–691 (2011). https://doi.org/10.1007/s10337-011-2133-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2133-0

Keywords

Navigation