Skip to main content
Log in

Determination of Polycyclic Aromatic Hydrocarbons in Vegetables by Headspace SPME-GC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple, sensitive and inexpensive method has been developed for the quantitative determination of eight polycyclic aromatic hydrocarbons (PAHs) in vegetables based on headspace solid-phase microextraction coupled with gas chromatography using a sol–gel calix[6]arene-containing fiber. Parameters related to the extraction efficiency such as extraction temperature, extraction time, ionic strength, stirring speed, and solvents’ addition were evaluated and optimized. Owing to the good selectivity and high extraction capability of the sol–gel calix[6]arene-containing fiber, low detection limits of 0.04–2.32 ng g−1 and good linearities with linear correlation coefficients >0.9964 were obtained. The relative standard deviation values were <11.6% for all of the PAHs. Average recoveries ranged from 81.07 to 107.5%. The method was applied to analyze nine kinds of vegetables near South Lake, Wuhan, China. The total concentrations of PAHs in these vegetables were found to vary between 3.91 and 96.98 ng g−1 wet weight with 2- and 3-ring PAHs predominating. Generally speaking, PAHs levels in leafy vegetables were higher than those in fruit vegetables, and root and subterranean stem vegetables had the lowest levels. The effect of cooking methods on PAHs concentration in vegetables was tested, and the results showed that PAHs in vegetables reduced a little after blanching, and was not detected after stir-frying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stacewicz-Sapuntzakis M, Borthakur G, Burns JL, Bowen PE (2008) Mol Nutr Food Res 52:114–130. doi:10.1002/mnfr.200600296

    Article  CAS  Google Scholar 

  2. McGrath TE, Wooten JB, Chan WG, Hajaligol MR (2007) Food Chem Toxicol 45:1039–1050. doi:10.1016/j.fct.2006.12.010

    Article  CAS  Google Scholar 

  3. García-Falcón MS, Pérez-Lamela M, Simal-Gándara J (2004) J Agric Food Chem 52:6897–6903. doi:10.1021/jf049385l

    Article  Google Scholar 

  4. Zanieri L, Galvan P, Checchini L, Cincinelli A, Lepri L, Donzelli GP, Del Bubba M (2007) Chemosphere 67:1265–1274. doi:10.1016/j.chemosphere.2006.12.011

    Article  CAS  Google Scholar 

  5. Tfouni SAV, Souza NG, Neto MB, Loredo ISD, Leme FM, Furlani RPZ (2009) Food Chem 116:391–394. doi:10.1016/j.foodchem.2009.02.040

    Article  CAS  Google Scholar 

  6. Orecchio S, Ciotti VP, Culotta L (2009) Food Chem Toxicol 47:819–826. doi:10.1016/j.fct.2009.01.011

    Article  CAS  Google Scholar 

  7. Viñas P, Campillo N, Aguinaga N, Pérez-Cánovas E, Hernández-Córdoba M (2007) J Chromatogr A 1164:10–17. doi:10.1016/j.chroma.2007.06.056

    Article  Google Scholar 

  8. Chatonnet P, Escobessa J (2007) J Agric Food Chem 55:10351–10358. doi:10.1021/jf071665o

    Article  CAS  Google Scholar 

  9. Gullén MD, Goicoechea E, Palencia G, Cosmes N (2008) J Agric Food Chem 56:2028–2033. doi:10.1021/jf072974h

    Article  Google Scholar 

  10. Purcaro G, Moret S, Conte LS (2009) Meat Sci 81:275–280. doi:10.1016/j.meatsci.2008.08.002

    Article  CAS  Google Scholar 

  11. Perugini M, Serafino GD, Giacomelli A, Medrzycki P, Sabatini AG, Oddo LP, Marinelli E, Amorena M (2009) J Agric Food Chem 57:7440–7444. doi:10.1021/jf9011054

    Article  CAS  Google Scholar 

  12. Danyi S, Brose F, Brasseur C, Schneider YJ, Larondelle Y, Pussemier L, Robbens J, De Saeger S, Maghuin-Rogister G, Scippo ML (2009) Anal Chim Acta 633:293–299. doi:10.1016/j.aca.2008.11.049

    Article  CAS  Google Scholar 

  13. Camargo MCR, Toledo MCF (2003) Food Control 14:49–53

    Article  Google Scholar 

  14. Xia ZH, Duan XL, Qiu WX, Liu D, Wang B, Tao S, Jiang QJ, Lu B, Song YX, Hu XX (2010) Sci Total Environ 408:5331–5337. doi:10.1016/j.scitotenv.2010.08.008

    Article  CAS  Google Scholar 

  15. Chen SC, Liao CM (2006) Sci Total Environ 366:112–123. doi:10.1016/j.scitotenv.2005.08.047

    Article  CAS  Google Scholar 

  16. Martí-Cid R, Llobet JM, Castell V, Domingo JL (2008) Food Chem Toxicol 46:3163–3171. doi:10.1016/j.fct.2008.07.002

    Article  Google Scholar 

  17. Martorell I, Perelló G, Martí-Cid R, Castell V, Llobet JM, Domingo JL (2010) Environ Int 36:424–432. doi:10.1016/j.envint.2010.03.003

    Article  CAS  Google Scholar 

  18. Voutsa D, Samara C (1998) Sci Total Environ 218:203–216

    Article  CAS  Google Scholar 

  19. Khan S, Aijun L, Zhang SZ, Hu QH, Zhu YG (2008) J Hazard Mater 152:506–515. doi:10.1016/j.jhazmat.2007.07.014

    Article  CAS  Google Scholar 

  20. Wild SR, Jones KC (1992) Sci Total Environ 119:85–119. doi:10.1016/0048-9697(92)90258-T

    Article  CAS  Google Scholar 

  21. Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, Sun R (2004) Sci Total Environ 320:11–24. doi:10.1016/S0048-9697(03)00453-4

    Article  CAS  Google Scholar 

  22. Tao S, Jiao XC, Chen SH, Xu FL, Li YJ, Liu FZ (2006) Environ Pollut 140:13–15. doi:10.1016/j.envpol.2005.10.003

    Article  CAS  Google Scholar 

  23. Zohair A, Salim AB, Soyibo AA, Beck AJ (2006) Chemosphere 63:541–553. doi:10.1016/j.chemosphere.2005.09.012

    Article  CAS  Google Scholar 

  24. Li JW, Shang X, Zhao ZX, Tanguay RL, Dong QX, Huang CJ (2010) J Hazard Mater 173:75–81. doi:10.1016/j.jhazmat.2009.08.050

    Article  CAS  Google Scholar 

  25. Ye CW, Gao J, Yang C, Liu XJ, Li XJ, Pan SY (2009) Anal Chim Acta 641:64–74. doi:10.1016/j.aca.2009.02.052

    Article  CAS  Google Scholar 

  26. Li XJ, Zeng ZR, Gao SZ, Li HB (2004) J Chromatogr A 1023:15–25. doi:10.1016/j.chroma.2003.09.042

    Article  CAS  Google Scholar 

  27. Li XJ, Gong SL, Zeng ZR (2005) Chromatographia 62:519–525. doi:10.1365/s10337-005-0665-x

    Article  CAS  Google Scholar 

  28. Doick KJ, Lee PH, Semple KT (2003) Environ Pollut 126:399–406. doi:10.1016/S0269-7491(03)00230-6

    Article  CAS  Google Scholar 

  29. Llompart M, Li K, Fingas M (1999) Talanta 48:451–459

    Article  CAS  Google Scholar 

  30. Ezquerro Ó, Ortiz G, Pons B, Tena MT (2004) J Chromatogr A 1035:17–22. doi:10.1016/j.chroma.2004.02.030

    Article  CAS  Google Scholar 

  31. Holadová K, Prokůpková G, Hajšlová J, Poustka J (2007) Anal Chim Acta 582:24–33. doi:10.1016/j.aca.2006.09.005

    Article  Google Scholar 

  32. Li XJ, Zeng ZR, Xu Y (2006) Anal Bioanal Chem 384:1428–1437. doi:10.1007/s00216-005-0281-5

    Article  CAS  Google Scholar 

  33. Batlle R, Sánchez C, Nerín C (1999) Anal Chem 71:2417–2422. doi:10.1021/ac990026c

    Article  CAS  Google Scholar 

  34. Zhang ZY, Pawliszyn J (1995) Anal Chem 67:34–43

    Article  CAS  Google Scholar 

  35. Kipopoulou AM, Manoli E, Samara C (1999) Environ Pollut 106:369–380

    Article  CAS  Google Scholar 

  36. Perelló G, Martí-Cid R, Castell V, Llobet JM, Domingo JL (2009) Food Chem Toxicol 47:709–715. doi:10.1016/j.fct.2008.12.030

    Article  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the National Natural Science Foundation of China (Grant No. 30901007) and the Ministry of Education of China (Grant No. 081025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Juan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, FF., Huang, JY., Zhang, XN. et al. Determination of Polycyclic Aromatic Hydrocarbons in Vegetables by Headspace SPME-GC. Chromatographia 74, 99–107 (2011). https://doi.org/10.1007/s10337-011-2024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2024-4

Keywords

Navigation