Skip to main content
Log in

The Optimal Control of Geometry and Voltage Parameters on Electrokinetic Transport to Avoid Sample Leakage in Microfluidic Chips

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Computer simulation is used to investigate sample transport phenomena of cross microfluidic chips. In this study, Kirchhoff circuit theory is employed to calculate the electric field strength and approximate electroosmotic flow. It is apparent from the results that both the simulation and the theoretical data show similar trends in the electroosmosis of cross microchips. The main target in this study is to summarize the optimal controlling parameter values for avoiding sample leakage in the transport process. The effects of the applied voltage ratio, the geometry ratio and the zeta potential were simulated using a computational fluid dynamics and multiphysics solver software package (CFD-ACE+). Under our designed conditions, two major conclusions were reached: (1) for high-voltage ratios, the sample leakage can be avoided as the geometry ratio is large enough at 0.5 or greater, and (2) for small geometries, maintaining a smaller voltage ratio, 0.3 or less, is essential for avoiding sample leakage. The key is to govern the sample velocity in the upstream faster than that in the downstream. Although real experimental conditions can be further fine tuned under microscopy monitoring, these conclusions are helpful to design the proper channel geometry and set up suitable voltage parameters to avoid sample leakages in one cross-channel chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ermakov S, Jacobson S, Ramsey J (1998) Anal Chem 70:4494–4504. doi:10.1021/ac980551w

    Article  CAS  Google Scholar 

  2. Manz A, Fettinger JC, Verpoorte E, Harrison DJ, Leid H, Widmer AM (1990) Tech. Digest MME 90. Berlin, pp 127–132

  3. Ross D, Johnson TJ, Locascio LE (2001) Anal Chem 73:2509–2515. doi:10.1021/ac001509f

    Article  CAS  Google Scholar 

  4. Devasenathipathy S, Santiago JG (2002) Anal Chem 74:3704–3713. doi:10.1021/ac011243s

    Article  CAS  Google Scholar 

  5. Patankar NA, Hu HH (1998) Anal Chem 70:1870–1881. doi:10.1021/ac970846u

    Google Scholar 

  6. Arulanandam S, Li D (2000) J Colloid Surf A: Physicochem Eng Asp 161:89–102. doi:10.1016/S0927-7757(99)00328-3

    Article  CAS  Google Scholar 

  7. Mala GM, Yang C, Li D (1998) J Colloid Surf A: Physicochem Eng Asp 135:109–116. doi:10.1016/S0927-7757(97)00215-X

    Article  Google Scholar 

  8. Yang C, Li D (1998) J Colloid Surf A: Physicochem Eng Asp 143:339–353. doi:10.1016/S0927-7757(98)00259-3

    Article  CAS  Google Scholar 

  9. Jacobson SC, Culbertson CT, Daler JE, Ramsey JM (1998) Anal Chem 70:3476–3480. doi:10.1021/ac980349t

    Article  CAS  Google Scholar 

  10. Sinton D, Li D (2003) J Colloid Surf A: Physicochem Eng Asp 222:273–283. doi:10.1016/S0927-7757(03)00233-4

    Article  CAS  Google Scholar 

  11. Arulanandam S, Li D (2000) J Colloid Interface Sci 225:421–428. doi:10.1006/jcis.2000.6783

    Article  CAS  Google Scholar 

  12. Sinton D, Canseco CE, Ren L, Li D (2002) J Colloid Interface Sci 254:184–189. doi:10.1006/jcis.2002.8584

    Article  CAS  Google Scholar 

  13. Sinton D, Ren L, Li D (2003) J Colloid Interface Sci 266:448–456. doi:10.1016/S0021-9797(03)00630-1

    Article  CAS  Google Scholar 

  14. Sinton D, Ren L, Li D (2003) J Colloid Interface Sci 260:431–439. doi:10.1016/S0021-9797(02)00181-9

    Article  CAS  Google Scholar 

  15. Hu Y, Werner C, Li D (2004) J Colloid Interface Sci 280:527–536. doi:10.1016/j.jcis.2004.08.011

    Article  CAS  Google Scholar 

  16. Wang X, Wu J, Li D (2006) J Colloid Interface Sci 293:483–488. doi:10.1006/j. jcis.2005.06.080

    Article  CAS  Google Scholar 

  17. Jin Y, Luo GA (2003) Electrophoresis 24:1242–1252. doi:10.1002/elps.200390160

    Article  CAS  Google Scholar 

  18. Tsai CH, Yang RJ, Ta CH, Fu LM (2005) Electrophoresis 26:674–686. doi:10.1002/elps.200410032

    Article  CAS  Google Scholar 

  19. Seiler K, Fan HZ, Fiurl K, Harrison DJ (1994) Anal Chem 66:3485–3491. doi:10.1021/ac00092a029

    Article  CAS  Google Scholar 

  20. Ren CL, Li D (2006) J Colloid Interface Sci 294:482–491. doi:10.1016/j.jcis.2005.07.051

    Article  CAS  Google Scholar 

  21. Ren L, Li D (2002) J Colloid Interface Sci 254:384–395. doi:10.1006/jcis.2002.8645

    Article  CAS  Google Scholar 

  22. Xuan X, Li D (2005) J Colloid Interface Sci 289:291–303. doi:10.1016/j. jcis.2005.03.069

    Article  CAS  Google Scholar 

  23. Jacobson SC, Ramsey JM (1997) Anal Chem 69:3212–3217. doi:10.1021/ac961093z

    Article  CAS  Google Scholar 

  24. Zhang CX, Manz A (2001) Anal Chem 73:2656–2662. doi:10.1021/ac010138f

    Article  CAS  Google Scholar 

  25. Ren CL, Li D (2004) Anal Chim Acta 518:59–68. doi:10.1016/j.aca.2004.05.018

    Article  CAS  Google Scholar 

  26. Patankar SV (1980) Numerical heat transfer and fluid flow in series in computational methods in mechanics and thermal sciences. Mc-Graw–Hill, Toronto

    Google Scholar 

Download references

Acknowledgments

This study was supported from National Science Council, Taiwan (NSC), National Chung Cheng University, and National Formosa University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shau-Chun Wang.

Appendix: The Kirchhoff Theory Model

Appendix: The Kirchhoff Theory Model

In the cross-channel conduits in Fig. 1, the electric current in each channel follows the relationship

$$ I_{1} = 2I_{2} + I_{3} $$
(6)

where I 1 is the current in the upper port of the vertical channel, I 2 is the current in both side channels, and I 3 is the current in the lower port of the vertical channel.

In a channel, the electric resistance (R *) is proportional to the channel length L and inversely proportional to the cross-sectional area (A) of channel. In Eq. 7, the constant ρ is the inverse of the bulk liquid conductivity κ.

$$ R^* = {\frac{\rho \times L}{A}} $$
(7)

The above equation can be rearranged to solve for the electrical potential of the downstream after the intersection. The cross biochip requires four electrodes to control the potential in the separation process. To calculate the potential at the cross part (V cross),

$$ V_{\text{cross}} = {\frac{{\left( {V_{1} \times L_{2} \times L_{3} + 2L_{1} \times L_{3} \times R} \right)}}{{\left( {L_{2} \times L_{3} + 2L_{1} \times L_{3} \times R + L{}_{1} \times L_{2} } \right)}}} $$
(8)
$$ {\frac{\Updelta V}{{L_{3} }}} = {\frac{{V_{\text{cross}} - V_{3} }}{{L_{3} }}} $$
(9)
$$ E_{\text{steady}} = {\frac{{\left( {V_{1} - V_{\text{cross}} } \right)}}{{L_{1} }}} - {\frac{{2\left( {V_{\text{cross}} - V{}_{2}} \right) \times R}}{{L_{2} }}} $$
(10)

where L 1 is 0.5 mm, L 2 is 0.4 mm (left and right), L 3 is 1.5 mm and R is the channel cross-sectional area ratio A2/A1. When channel depth is not changed, the electric resistance of each channel is dependent on the channel width.

For an infinite rectangular channel, the Helmholtz–Smolouchowski equation was obtained as follows:

$$ V_{s} = \mu_{\text{eo}} E. $$
(11)

In Eq. 5, μ eo is the electroosmotic mobility

$$ \mu_{\text{eo}} = {\frac{{\varepsilon \varepsilon_{0} \xi }}{\eta }} $$
(12)

where ε is the electric permittivity of the solution, η is the viscosity, and ζ is the zeta potential.

In Eq. 12 under the same zeta potential the electroosmotic mobility (μ eo) is constant. However, Eq. 10 indicates that the electric field strength changes when the cross-sectional area varies in different channel width ratios. Therefore, according to Eq. 11 the electroosmotic flow velocity (V s) changes when the channel width ratio varies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, MH., Wang, SC. & Cheng, JC. The Optimal Control of Geometry and Voltage Parameters on Electrokinetic Transport to Avoid Sample Leakage in Microfluidic Chips. Chromatographia 73, 567–577 (2011). https://doi.org/10.1007/s10337-011-1933-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-1933-6

Keywords

Navigation